• Title/Summary/Keyword: Angular Velocity

Search Result 912, Processing Time 0.035 seconds

Statistical Blade Angular Velocity Information-based Wind Turbine Fault Diagnosis Monitoring System (블레이드 각속도 통계 정보 기반 풍력 발전기 고장 진단 모니터링 시스템)

  • Kim, Byoungjin;Kang, Suk-Ju;Park, Joon-Young
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.619-625
    • /
    • 2016
  • In this paper, we propose a new fault diagnosis monitoring system using gyro sensor-based angular velocity calculation for blades of the wind turbine system. First, the proposed system generates the angular velocity dataset for the rotation speed of the normal blade. Using the dataset, we estimate and evaluate the state of blades for the wind turbine by comparing the current state with the pre-calculated normal state. In the experimental results, the angular velocity of the normal state was higher than $360^{\circ}/s$ while that of the damaged blades was lower than $360^{\circ}/s$ and the standard deviation of the angular velocity was significantly increased.

Solution and Estimate to the Angular Velocity of INS Formed only by Linear Accelerometers

  • Junwei, Wu;Jinfeng, Liu;Yunan, Zhang;Na, Yuan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.103-107
    • /
    • 2006
  • At present, most efforts tend to develop a INS which is only based linear accelerometers, because of the low cost micro-machining gyroscopes lack of the accuracy needed for precise navigation application and possible achieving the required levels of precise for micro-machining accelerometer. Although it was known in theory that a minimum of six accelerometers are required for a complete description of a rigid body motion, and any configuration of six accelerometers (except for a "measure zero " set of six-accelerometer schemes) will work. Studies on the feasible configuration of GF-INS indicate that the errors of angular velocity resolved from the six accelerometers scheme are diverged with time or have multi solutions. The angular velocity errors are induced by the biases together with the position vectors of the accelerometers, therefore, in order to treat with the problem just mentioned, researchers have been doing many efforts, such as the extra three accelerometers or the magnetometers may be taken as the reference information, the extended Kalman filter (EKF) involved to make the angular velocity errors bound and be estimated, and so on. In this paper, the typical configurations of GF-INS are introduced; for each type GF-INS described, the solutions to the angular velocity and the specific force are derived and the characteristic is indicated; one of the corresponding extend Kalman filters are introduced to estimate the angular errors; parts of the simulation results are presented to verify the validity of the equations of angular velocity and specific force and the performance of extend Kalman filter.

  • PDF

A Kinematical Analysis of Side Kick Motion in Taekwondo (태권도 옆차기 동작의 운동학적 분석)

  • Park, Kwang-Dong
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.49-63
    • /
    • 2003
  • For this study, four male university Taekwondo players were randomly chosen, between the weight categories of 60Kg and 80Kg. Their side kicks (yeop chagi), which are part of foot techniques, were kinematically analyzed in terms of the time, angle, and angular velocity factors involved with the kicks through the three-dimensional imaging. The results of the analysis are as fellows. 1. Time factor The first phase(preparation) was 0.48sec on average, accounting for 60% of the entire time spent; the second phase(the minimum angle of the knee joint) was 0.21sec on average, taking up 26% of the whole time spent; and the third phase(hitting) was 0.11sec on average, representing 14% of the entire time spent. 2. Angle factor In the first phase(preparation), rotating their bodies along the long axis, the players bended their hip and knee joints a lot, by moving fast in the vertical and horizontal directions, in the second phase(the minimum angle of the knee joint), the players continued to extend their bodies along the vertical axis, while pronating their lower legs and bending their hip and knee joints a lot to reduce the radius of gyration, and in the third phase(hitting), they extended their knee joints greatly so that the angle movements of their lower bodies shifted to circle movements. 3. Angular velocity factor In the first phase(preparation), the angular velocity of the hip and knee joints increased. while moving horizontally and rotating the body along the long axis; in the second phase(the minimum angle of the knee joint), the angular velocity increased by bending the hip and knee joints fast to reduce the rotation radios; and in the third phase(hitting), the angular velocity was found to have increased, by rotating the body along the long axis to increase the angular velocity and shifting the angular momentum of the pronated knee joint to the circular momentum.

An Algorithm for Detecting Linear Velocity and Angular Velocity for Improve Convenience of Assistive Walking System (보행보조시스템의 조작 편리성 향상을 위한 사용자의 선속도 및 회전각속도 검출 알고리즘)

  • Kim, Byeong-Cheol;Lee, Won-Young;Eom, Su-Hong;Jang, Mun-Seok;Kim, Pyeong-Su;Lee, Eung-Hyuk
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.10 no.4
    • /
    • pp.321-328
    • /
    • 2016
  • In this paper, we propose a walk status method which can be fused with conventional walk intention method to improve convenience of an electric assistive walking system for elder people with restricted walking capabilities. The system uses a handlebar as a trigger and regards grabbing a handlebar as expressing will to walk. And the system uses a user's linear velocity and angular velocity as linear velocity and angular velocity of a system, checked by laser range finder. To achieve this, we propose a method to find a virtual central point of a human body by estimating a central point between two legs. The experiments are carried out by comparing user's linear velocity and angular velocity, and system's linear velocity and angular velocity. The results show that the error of linear velocity and angular velocity between a user and a system are 1% and 2.77%, which means the linear velocity and angular velocity of a user can be applied to a system. And it is confirmed that the proposed fusion method can prevent a user from being dragged by an assistive walking system or a malfunction caused by lack of experience

Mouthpiece Modeling of the Electronic Wind Instrument Using a Propeller and Linear Analysis for Fast Tracking Wind Velocity (빠른 바람의 세기 추적을 위한 프로펠러를 사용한 전자 관악기 취구의 선형 모델링)

  • Kwak, Jae-Hyung;Lee, Gang-Seong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3C
    • /
    • pp.295-301
    • /
    • 2010
  • In this paper, we propose a new mouthpiece model for the electronic wind instrument using a propeller and linear analysis for fast tracking wind velocity blown. This method is a modification of the velocity anemometer for fast tracking wind velocity by the propeller's angular velocity (speed of revolution). In the case of velocity anemometer, wind velocity is calculated using the property that wind velocity is in proportion to the propeller's angular velocity. However, wind velocity and angular velocity of the propeller are not in one-one correspondence because wind velocity takes some transitional time for the expected wind velocity to be calculated from angular velocity. To resolve this problem, we propose a method for finding the impulse response of the system which can be considered as a linear system, and for estimating the wind velocity by deconvolving the propeller's angular velocity with the impulse response. To experiment and to prove the validity of the proposed system, we designed a mouthpiece model which consists of a motor, a propeller and an encoder. The result of estimated wind velocity in this method showed that this system is about eightfold faster than the method by the conventional velocity anemometer.

Effects of Gravity and Angular Velocity Profiles on the Dynamic Behavior of an Automatic Ball Balancer (자동볼평형장치의 동적거동에 미치는 중력과 속도파형의 영향)

  • Jung, Du-Han;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.5
    • /
    • pp.511-516
    • /
    • 2004
  • The dynamic behavior of an automatic ball balancer (ABB) is studied considering the effects of gravity and angular velocity profiles. In this study, a physical model for an ABB installed on the Jeffcott rotor is adopted in order to investigate the effects of gravity and angular acceleration. The equations of motion for the rotor with ABB are derived by using Lagrange's equation. Based on derived equations, dynamic responses for the rotor are computed by using the generalized-o method. From the computed responses, the effects of gravity and angular velocity profiles on the dynamic behavior are investigated. It is found that the balancing of the rotor with ABB can be achieved regardless of gravity. It Is also shown that a smooth velocity profile yields relatively smaller vibration amplitude than a non-smooth velocity profile.

Development of a Zero Velocity Detectable Sensor Algorithm with Dual Incremental Encoders (정지 속도 검출 가능한 이중 증분 엔코더 센서 알고리즘 개발)

  • Lee, Se-Han;Kim, Byoung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.1
    • /
    • pp.82-88
    • /
    • 2009
  • The output of the encoder is a digital pulse, which is also easy to be connected to a digital controller. There are various angular velocity detecting methods of M, T, and M/T. Each of them has its own properties. There is a common limitation that the angular velocity detection period is strongly dependent on the destination velocity magnitude in case of ultimate low range. They have ultimately long detection period or cannot even detect angular velocity at near zero velocity. This paper proposes a zero velocity detectable sensor algorithm with the dual encoder system. The sensor algorithm is able to keep detection period moderately at near zero velocity and even detect zero velocity within nominal period. It is useful for detecting velocity in case of changing rotational direction at which there occurs zero velocity. In this paper, various experimental results are shown for the algorithm validity.

An Optimal Trajectory Planning for Redundant Robot Manipulators Based on Velocity Decomposition (속도분리를 이용한 여유자유도 로봇의 최적 경로계획)

  • 이지홍;원경태
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.836-840
    • /
    • 1999
  • Linear motion and angular motion in task space are handled separately in joint velocity planning for redundant robot manipulators. In solving inverse kinematic equations with given joint velocity limits, we consider the order of priority for linear motion and angular motion. The proposed method will be useful in such applications where only linear motions are important than angular motions or vice versa.

  • PDF

An Analytical Investigation on the Ratio of Angular Velocity in Spherical Involute Bevel Gearsets (구형 인볼류트 베벨기어쌍의 각속도비에 관한 해석적 연구)

  • Park, N.G.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.5
    • /
    • pp.40-45
    • /
    • 1995
  • The kinematical relationship of bevel gearsets lies at the root of the gear design. As the demand on precision bevel gears is increased in the related industries, the kinematic analysis of a pair of sperical involute bevel gears needs to be exactly evaluated for the computer aided design. Pitch cone angles of bevel gearsets have been calculated under the assumption that the geared system is equivalent to a coned roller system without slipping. But this kinematical model involves some errors in the value of the ratio of angular velocity. In this paper, the ratio of the angular velocity is exactly derived, based on the perfect involute tooth surface. Four nonlinear equations representing the kinematical relationships are numerically solved to obtain the pitch and base cone angles. The ratios of angular volocities according to pressure and shaft angles are calculated and compared with those of the approximate gear model.

  • PDF

Error Minimization of Angular Velocity using Encoders and Gyro (엔코더와 자이로를 이용한 각속도 오차 최소화)

  • Kim, Jung-Min;Do, Joo-Cheol;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.814-819
    • /
    • 2010
  • This paper is presented to study the error minimization of angular velocity for AGV(autonomous ground vehicle). The error minimization of angular velocity is related to localization technique which is the most important technique for autonomous vehicle. Accelerometer, yaw gyro and electronic compass have been used to measure angular velocity. And methods for error minimization of angular velocity have been actively studied through probabilistic methods and sensor fusion for AGVs. However, those sensors still occure accumulated error by mathematical error, system characters of each sensor, and computational cost are increased greatly when several sensor are used to correct accumulated error. Therefore, this paper studies about error minimization of angular velocity that just uses encoder and gyro. To experiment, we use autonomous vehicle which is made by ourselves. In experimental result, we verified that the localization error of proposed method has even less than the localization errors which we just used encoder and gyro respectively.