• Title/Summary/Keyword: Angular Torque

Search Result 237, Processing Time 0.027 seconds

Design and Analysis of Gear Train with Composition of Optimum Gear Ratio (최적 치차비 구현을 통한 치차열의 각도 위치 오차 설계 및 해석)

  • Yun, Jae-Yun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.6
    • /
    • pp.102-108
    • /
    • 2001
  • This paper addresses an analytical approach to the mechanical error analysis of gear train and tolerance design and manufacture of gear train in restricted space considering motor driving torque, driving system inertia, motor acceleration, motor rotor inertia and friction torque. The gear train is designed to have optimum gear ratio in restricted space and each gear is manufactured to have the lowest weight and each gear tooth is heat-treated to have robustness. Based on the small difference between the mechanical error analysis and measurement, gear train design with optimum gear ratio and restricted space and robustness is proposed.

  • PDF

Design, manufacture and analysis of gear train with composition of optimum gear ratio (최적 기어비 구현을 통한 치차열의 설계, 제작 및 분석)

  • 정상목;윤재윤
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.132-138
    • /
    • 1999
  • This paper addresses an analytical approach to the mechanical error analysis of gear train and tolerance design and manufacture of gear train in restricted space considering motor driving torque, driving system inertia, motor acceleration, motor rotor inertia and friction torque. The gear train is designed to have optimum gear ratio in restricted space and each gear is manufactured to have the lowest weight and each gear tooth is heat-treated to have robustness. Based on the small difference between the mechanical error analysis and measurement, gear train design with optimum gear ratio and restricted space and robustness is proposed

  • PDF

A REAL TIME CFD SIMULATION OF THE VERTICAL-AXIAL WIND TURBINE (전산해석을 이용한 수직축 풍력터빈의 실시간 공력해석)

  • Lee, M.S.;Han, B.Y.;Park, H.K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.147-154
    • /
    • 2010
  • The world is gradually running short of fossil fuel. Currently, the role of wind turbine is attracting great attention from all over the world. The objective of this study is to investigate blades of Vertical-axial wind turbine (VAWT) for optimum design using the CFD from the aerodynamics point of view. Because one of the performance of wind turbine depends on shape of blades, the study of comparing one gyro mill type blade and a modified one was carried out. Using the results of computation, we calculated and compared RPM for both models at same wind velocity. And we calculated angular acceleration and moment of inertia to find torque in every time-step. And the pressure contour and velocity profile around the blade were analyzed Also, this study is performed to calculate the wake effect.

  • PDF

Design and Tracking Control of 4-DOF Motion Platform for Bicycle Simulator (자전거 시뮬레이터용 4자유도 운동판의 설계 및 추적 제어)

  • 성지원;신재철;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.235-240
    • /
    • 2001
  • A four degrees of freedom (dof) motion platform for bicycle simulator is developed. The motion platform, capable of the vertical linear and three angular motions, is designed based on analysis of the typical motion characteristics revealed by the existing six dof bicycle simulator. The platform essentially consists of two parts: the three dof parallel manipulator, consisting of a moving platform, a fixed base and three actuators, and the turntable to generate the yaw motion. The nonlinear kinematics and dynamics of the three dof parallel manipulator with multiple closed loop chains are analyzed for tracking control of the motion platform. The tracking performances of the three control schemes are experimentally compared: the computed torque method (CTM), the sliding mode control (SMC) and the PD control. The CTM and SMC, incorporated with the system dynamics model, are found to be equally better in performance than the PD controller, irrespective of the presence of external disturbance.

  • PDF

Vibration Control of a Very Flexible Robot Arm-via Piezoactuators (압전 작동기를 이용한 매우 유연한 로봇 팔의 진동 제어)

  • 신호철;최승복
    • Journal of KSNVE
    • /
    • v.6 no.2
    • /
    • pp.187-196
    • /
    • 1996
  • A new control strategy to actively control the vibration of a very flexible single link manipulator is proposed and experimentally realized. The control scheme consists of two actuators; a motor mounted at the beam hub and a piezoceramic bonded to the surface of the flexible link. The control torque of the motor to produce a desired angular motion is firstly determined by employing a sliding mode control theory on the equivalent rigid dynamics. The torque is then applied to the flexible manipulator in order to activate the commanded motion. During the motion, underirable oscillation is actively suppressed by applying a feedback control voltage to the piezoceramic actuator. Consequently, the desired tip position is favorably accomplished without vibration. Measured control responses are presented in order to demonstrate the efficiency of the proposed control methodology.

  • PDF

A Study on the Parameters and Characteristics of Induction Motor Driven by Inverter (인버터로 구동되는 유도전동기의 정수 및 특성에 관한 연구)

  • 전내석;김종윤;오진석;김윤식
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.34-42
    • /
    • 2000
  • In this paper conventional technique will be described, which can be used for the measuring various parameters of induction motor. This is followed by presenting some other, alternative, techniques. The two tests are described which are suitable to obtain the electrical parameters of symmetrical 1hp three-phase squirrel-cage induction motor. These are the blocked rotor test and no load test. By the application of these, it is possible to determine the parameters which are presented in the steady-state equivalent-circuit of determining an induction motor. One conventional method of determining the inertia of an induction motors is obtained by performing retardation tests. The angular rotor speed of the motor is monitored, following its disconnection from the stator supply. Since the inertia torque J dw/dt contains the inertia coefficient J and the friction and windage torque Bw contains the coefficient B, then J and B can be determined by performing retardation tests.

  • PDF

Dynamic Characteristics of Journal Bearings Considering Bearing Span (베어링 Span을 고려한 저널 베어링의 동특성 해석)

  • 윤진욱
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.906-910
    • /
    • 2003
  • This paper numerically analyzes the dynamic characteristics of a spindle system supported by two identical journal bearings considering bearing span that has dynamic load due to its mass unbalance. The Reynolds equation is transformed to solve a herringbone grooved journal bearing. The Reynolds equations are solved using FEM in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or angular displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the same bearing spans of upper and lower journal bearings produce the minimum runout and friction torque of a spindle system.

  • PDF

Power Control of a Pitch-controlled Wind Power System (피치제어형 풍력발전시스템의 출력제어)

  • 임종환;허종철
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.4
    • /
    • pp.84-91
    • /
    • 2003
  • The paper presents a power control algorithm for a full pitch-controlled wind power system. The design of a pitch controller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the tip speed ratio is constant. For power control, however, the tip speed ratio is no longer a constant. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle. The reference pitch model is used to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of simulation.

Dynamic Characteristics of Journal Bearings Considering Bearing Span (베어링 Span을 고려한 저널 베어링의 동특성 해석)

  • Yoon, Jinwook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.9 s.90
    • /
    • pp.779-784
    • /
    • 2004
  • This paper numerically analyzes the dynamic characteristics of a spindle system supported by two identical journal bearingsconsidering bearing span that has dynamic load due to its mass unbalance. The Reynolds equation is transformed to solve a herringbone grooved journal bearing. The Reynolds equations are solved using FEM in order to calculate the pressure distribution in a fluid film. Reaction forces and friction torque are obtained by integrating the pressure and shear stress along the fluid film, respectively. Dynamic behaviors, such as whirl radius or angular displacement of a rotor, are determined by solving its nonlinear equations of motion with the Runge-Kutta method. This research shows that the same bearing spans of upper and lower journal bearings produce the minimum runout and friction torque of a spindle system.

Power Regenerating Drive of a Induction Motor by Field Acceleration Method (자계가속법에 의한 유도 전동기의 전력회생 구동)

  • Hong, Soon-Ill;Hong, Jeng-Pyo;Jung, Seoung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.4
    • /
    • pp.417-424
    • /
    • 2007
  • This paper presents a solution that an analytical model for an induction motor and the formula of regenerative power and instantaneous torque are derived. based on the spiral vector. The torque is controlled linearly through variations of the slip angular velocity, based on the field acceleration method (FAM). And also PWM inverter fed induction motor drives is schemed to be easily a regenerative drive. The voltage source inverter fed induction motor drives that regenerative power occurs with back current type is presented, to easily controlled the feedback power and to proper the adaption of energy shaving drives. The experimental tests verify the performance of the FAM, proving that food behavior of the drive is achieved in the transient and steady state operating condition, and are discussed to save the power that regenerative power is measured at the operating acceleration or deceleration of servo system.