• Title/Summary/Keyword: Angle of Inclination

Search Result 745, Processing Time 0.028 seconds

Experimental Study on Two-Phase Flow Parameters of Subcoolet Boiling in Inclined Annulus

  • Lee, Tae-Ho;Kim, Moon-Oh;Park, Goon-Cherl
    • Nuclear Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.29-48
    • /
    • 1999
  • Local two-phase flow parameters of subcooled flow boiling in inclined annulus were measured to investigate the effect of inclination on the internal flow structure. Two-conductivity probe technique was applied to measure local gas phasic parameters, including void fraction, vapor bubble frequency, chord length, vapor bubble velocity and interfacial area concentration. Local liquid velocity was measured by Pilot tube. Experiments were conducted for three angles of inclination; 0$^{\circ}$(vertical), 30$^{\circ}$, 60$^{\circ}$. The system pressure was maintained at atmospheric pressure. The range of average void fraction was up to 10% and the average liquid superficial velocities were less than 1.3 m/sec. The results of experiments showed that the distributions of two-phase How parameters were influenced by the angle of channel inclination. Especially, the void fraction and chord length distributions were strongly affected by the increase of inclination angle, and flow pattern transition to slug flow was observed depending on the How conditions. The profiles of vapor velocity, liquid velocity and interfacial area concentration were found to be affected by the non-symmetric bubble size distribution in inclined channel. Using the measured distributions of local phasic parameters, an analysis for predicting average void fraction was performed based on the drift flux model and flowing volumetric concentration. And it was demonstrated that the average void fraction can be more appropriately presented in terms of flowing volumetric concentration.

  • PDF

Mixed Convection between Inclined Parallel Plates with different Temperatures (온도차를 갖는 경사진 평행평판 내의 혼합대류 열전달)

  • Piao, R.L.;Kwon, O.B.;Bae, D.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.33-39
    • /
    • 2005
  • Experiments are performed to study the mixed convection flow and heat transfer in an inclined parallel plates with the upper part cooled and the lower part heated uniformly. The Reynolds number ranges from $4.0{\times}10^{-3}\;to\;6.2{\times}10^{-2}$, the angle of inclination, ${\theta}$, from 0 to 45 degree from the horizontal line, and Pr of the high viscosity fluid is 909. In this paper, the PIV(Particle image velocimetry) with TLC(Thermo-sensitive liquid crystal) tracers is used for visualizing and analysis. This method allows simultaneous measurement of velocity and temperature field at a given instant of time. Quantitative data of the temperature and velocity are obtained by applying the color-image processing to a visualized image, and neural network is applied to the color-to-temperature calibration. This paper describes the methods, and presents the quantitative visualization of mixed convection. From this study, it is found that the flow pattern can be classified into three patterns which are affected by Reynolds number and the angle of inclination.

  • PDF

Study on rock fracture behavior under hydromechanical loading by 3-D digital reconstruction

  • Kou, Miaomiao;Liu, Xinrong;Wang, Yunteng
    • Structural Engineering and Mechanics
    • /
    • v.74 no.2
    • /
    • pp.283-296
    • /
    • 2020
  • The coupled hydro-mechanical loading conditions commonly occur in the geothermal and petroleum engineering projects, which is significantly important influence on the stability of rock masses. In this article, the influence of flaw inclination angle of fracture behaviors in rock-like materials subjected to both mechanical loads and internal hydraulic pressures is experimentally studied using the 3-D X-ray computed tomography combined with 3-D reconstruction techniques. Triaxial compression experiments under confining pressure of 8.0 MPa are first conducted for intact rock-like specimens using a rock mechanics testing system. Four pre-flawed rock-like specimens containing a single open flaw with different inclination angle under the coupled hydro-mechanical loading conditions are carried out. Then, the broken pre-flawed rock-like specimens are analyzed using a 3-D X-ray computed tomography (CT) scanning system. Subsequently, the internal damage behaviors of failed pre-flawed rock-like specimens are evaluated by the 3-D reconstruction techniques, according to the horizontal and vertical cross-sectional CT images. The present experimental does not only focus on the mechanical responses, but also pays attentions to the internal fracture characteristics of rock-like materials under the coupled hydro-mechanical loading conditions. The conclusion remarks are significant for predicting the rock instability in geothermal and unconventional petroleum engineering.

Multiple solutions for steady state natural convection adjacent to an inclined isothermal flat plate in the region of largely upflow (상향유동 영역에서 경상등온평면에 의하여 야기된정상장태 자연대류의 다중해)

  • 유갑종;김병하;최병철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.5
    • /
    • pp.731-739
    • /
    • 1987
  • This study has been performed on multiple steady-state natural convection in the upflow region induced by an inclined isothermal plate immersed in pure cold water. The newly found additional steady-state solutions are of considerable practical interest because the heat-transfer rates for a pair of solutions with determining physical parameters and boundary conditions otherwise identical are sometimes vastly different. The results are as follows: First, in the largely upflow region, two solutions exist for 0.15157

The Effects of the Inclination on the Performance of dead-end operating PEM Fuel Cell (고분자 연료전지의 데드엔드 운전 시 기울임에 따른 성능 변화)

  • Jeong, Jee Hoon;Kho, Back Kyun;Han, In-Su;Shin, Hyun Khil;Hur, Tae Uk;Cho, Sung Baek
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • In automotive applicatons or water vehicles, the polymer electrolyte membrane fuel cell(PEMFC) stack is keep moving while their operation. Especially the inclination environment can take a effect to fuel cell stack perfromance, because this condition can cause a bad effect to water exhaust of fuel cell stack. In this study, a large scale stack(over 100kW power) is inclined upto 30 degree in lengthwise and crosswise using stack lift equipment. And the stack is operated in 10~100% load. No significant change has appeared in crosswise inclined condition and lenthwise low angle. But in lenthwise large angle tilting condition, the fuel cell performance has significantly decreased. And this performance decrease is aggravated in low load. An active water exhaust device is applied to the stack to prevent the performance decrease. And in lenthwise large angle tilting condition, this device cause a good effect to fuel cell stack performance.

  • PDF

Development of an Algorithm for Compensating Ground Inclination to Expand an Operational Field of a Missile Launcher (발사플랫폼의 운용성 확장을 위한 지면기울기 보상기법)

  • Chung, Jae-Wook;Kim, Yong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.86-92
    • /
    • 2012
  • When missile is launched, a launcher needs to be leveled with accuracy to avoid the systems's instability. In general, a launcher is leveled by adjusting the stroke of leveling jacks; however, it is still challenge to control the leveling jacks fast and accurately. This paper thus proposed an innovative algorithm for compensating ground inclination of a missile launcher to expand operational field of a missile launcher. Using two inclinometers attached on a launcher, a base jack for leveling is selected and the mixed gradient where launcher stands on can be estimated. Due to the limited stroke, the launcher can compensate its ground inclination within maximum stroke margin. Then, the ground inclination of a launcher can be compensated by calculated angle using weighting factors. The effectiveness of proposed algorithm is proved with a prototype missile launcher.

Experiment Analysis of the Burr Formation on the Inclined Exit Surface in Drilling (경사진 출구면에서 드릴 버 형성에 관한 실험적 고찰)

  • Kim, Byung-Kwon;Ko, Sung-Lim
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.47-53
    • /
    • 2006
  • An Experiment was carried out to find the scheme far minimization of burr formation on inclined exit surface in drilling. Several drills with different geometry are used for drilling the workpiece with inclined exit surface. Step drills are specified with step angle and step size. The influence of the inclination angle of exit surface on burr formation was observed, which enables to analyze the burr formation mechanism on inclined exit surface. Along the edge on the inclined exit surface, burrs are formed by the bending deflection to feed direction and also burrs are formed in exit direction of cutting edge. To minimize the burr formed in feed direction, the corner angle which is formed by the inclination angle and step angle must be large enough not to be bent to burr. By decreasing step angle of drill and decreasing the distance between two axes of two holes, burr formation at the intersecting holes can be minimized. Burr formation mechanisms are analyzed according to the drill geometries and cutting conditions. Several schemes far burr minimization on inclined exit surface were proposed.

Flow Properties of Granular Sands through a Circular Orifice

  • Min, Shin-Hong;Rhee, Shang-hi;Kim, Yong-Bae
    • Archives of Pharmacal Research
    • /
    • v.2 no.1
    • /
    • pp.1-8
    • /
    • 1979
  • The flow rate of various sand through circular orifice can be measured from a knowledge of a few easily measurable properties of the system. These are the orifice column and particle diameters, the angle of inclination of the orifice with the horizontal and an angle of repose of the granular sand material. Straight lines were obtained when the logarithm of the flow rate was plotted versus the logarithm of orfice diameter. No influence of excessive compaction and bed height was observed and the flow rate increased with decrease of particle diameter. The profile of flow developed the edge of the aperture in a way independent of its size. Linear relationship was observed between the angle of inclination of the orifice and the flow rate.

  • PDF

A finite element based approach to observe hydrodynamic pressure in reservoir adjacent to concrete gravity dam

  • Santosh Kumar, Das;Kalyan Kumar, Mandal;Arup Guha, Niyogi
    • Ocean Systems Engineering
    • /
    • v.12 no.4
    • /
    • pp.385-402
    • /
    • 2022
  • This paper deals with the study of hydrodynamic pressure in reservoir adjacent to the concrete gravity dam subjected to dynamic excitation. Widely famous finite element method is used to discretize the reservoir domain for modelling purpose. Pressure is considered as nodal variable following Eulerian approach. A suitable nonreflecting boundary condition is applied at truncated face of reservoir to make the infinite reservoir to finite one for saving the computational cost. Thorough studies have been done on generation of hydrodynamic pressure in reservoir with variation of different geometrical properties. Velocity profile and hydrodynamic pressure are observed due to harmonic excitation for variation of inclination angle of dam reservoir interface. Effect of bottom slope angle and inclined length of reservoir bottom on hydrodynamic pressure coefficient of reservoir are also observed. There is significant increase in hydrodynamic pressure and distinct changes in velocity profile of reservoir are noticeable for change in inclination angle of dam reservoir interface. Change of bottom slope and inclined length of reservoir bottom are also governing factor for variation of hydrodynamic pressure in reservoir subjected to dynamic excitation.

A Study on Dust Collection Efficiency of Axial-vane Type Cyclone for Oil Mist (오일미스트용 축상 유입식 사이클론의 집진효율에 관한 연구)

  • Yi, Chung-Seob;Shin, Hae-Joong;Lee, Chi-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.3
    • /
    • pp.415-420
    • /
    • 2012
  • Dust collecting performance of axial-vane type cyclone for oil mist was analyzed in this study. For predicting cut diameter size of cyclone, the number and angle of vane (${\beta}_2{^{\prime}}$) was calculated by CFD. As the result, ${\beta}_2{^{\prime}}$ was decreased as the number of vane was increased and the angle of inclination (${\beta}_2{^{\prime}}$) decreased, and it cause strong swirl flow. Therefore, it could be confirmed that as the number of vane was increased and the angle of inclination was decreased, cut diameter size was decreased. Also, by verifying the results of CFD through experiment, the cut diameter size could be 2 ${\mu}m$ at 4 $m^3/min$ of flow rate.