• Title/Summary/Keyword: Angiotensin converting enzyme (ACE) inhibitory activity

Search Result 279, Processing Time 0.027 seconds

Antioxidant and ACE Inhibitory Activities of Soybean Hydrolysates: Effect of Enzyme and Degree of Hydrolysis

  • Lee, Ji-Soo;Yoo, Mi-Ae;Koo, Seung-Hyun;Baek, Hyung-Hee;Lee, Hyeon-Gyu
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.873-877
    • /
    • 2008
  • Native soy protein isolate (SPI) was hydrolyzed with 4 different proteolytic enzymes, including bromelain, papain, Neutrase, and Flavourzyme. SPI hydrolysates with the degree of hydrolysis (DH) in range of 6 to 15% were prepared by each enzyme. The angiotensin 1 converting enzyme (ACE) inhibitory and the antioxidant activities of the SPI hydrolysates, such as superoxide dismutase-like activity and inhibition of the linoleic acid autoxidation, were evaluated. Overall, as the DH increased, all evaluated bioactivities of the SPI hydrolysates significantly increased. The significantly highest ACE inhibitory and antioxidant activities were found in hydrolysates made with papain and bromelain, respectively. SPI hydrolysates by Flavourzyme showed the significantly lowest activity in all tested bioactivities. The results suggested that ACE inhibitory and antioxidant activities of SPI hydrolysates were determined by the DH and by the enzyme used.

Angiotensin-I Converting Enzyme Inhibitory Activity by the Component of Traditional Tea Materials (기호음료 성분의 Angiotensin-I 전환효소 저해작용)

  • Do, Jeong-Ryong;Kim, Seon-Bong;Park, Yeung-Ho;Kim, Dong-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.25 no.5
    • /
    • pp.456-460
    • /
    • 1993
  • The present study was conducted to investigate Angiotensin I-converting enzyme(ACE) inhibition activity of the components of traditional tea materials in Korea. Angiotensin I-converting enzyme(ACE) inhibition activity of water soluble fractions obtained from the samples were strong in Zingiberis rhizoma, Acantopanacis cortex, Schizandrae fructus, Perilla semen, Cassiae torae semen, Zizyphy fructus in order. ACE inhibition activity of fractions obtained from methanol extract of Cassiae torae semen were strong in ethyl acetate fraction, ethyl ether fraction, water fraction, chloroform fraction in order. Compound C showed the strongest ACE inhibition activity among compound A, B, C, D separated from Cassiae torae semen, but Compound C separated from Cassiae torae semen was lower than bradykinin in the ACE inhibition activity.

  • PDF

Fractionation and Angiotensin I-converting Enzyme (ACE) Inhibitory Activity of Gelatin Hydrolysates from by-products of Alaska Pollock Surimi

  • Park, Chan-Ho;Kim, Hyung-Jun;Kang, Kyung-Tae;Park, Jae-W.;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.12 no.2
    • /
    • pp.79-85
    • /
    • 2009
  • Gelatin hydrolysates with a high inhibitory activity against angiotensin I-converting enzyme (ACE) were fractionated from Alaska pollock surimi refiner discharge. The ACE-inhibitory activity, expressed as $IC_{50}$ (mg/mL), was highest (0.49 mg/mL) in gelatin hydrolysates formed by sequential 2-hr treatments of Pronase and Flavourzyme. After fractionation through four different membrane filters with molecular weight cut-offs of 3, 5, 10, and 30 kDa, the highest ACE-inhibitory activity (0.21 mg/mL) was observed with the 3-kDa filtrate.

Changes of Angiotensin I-Converting Enzyme Inhibitory Activity, Fibrinolytic Activity and $\beta$-Secretase Inhibitory Activity of Red Wines During Fermentation and Post-Fermentation (적포도주들의 발효와 후 발효 중 심혈관 관련 Angiotensin I 전환효소 저해활성과 혈전용해활성 및 $\beta$-secretase 저해 활성의 변화)

  • No, Jae-Duck;Lee, Eun-Na;Seo, Dong-Soo;Chun, Jong-Pil;Choi, Shin-Yang;Lee, Jong-Soo
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.291-298
    • /
    • 2008
  • The cardiovascular angiotensin I-converting enzyme inhibitory activity, fibrinolytic activity and bbb-secretase inhibitory activity of four kinds of red wine were investigated during fermentation and post-fermentation. After 10 days of fermentation, the antihypertensive angiotensin I-converting enzyme (ACE) inhibitory activities of all the red wines ranged from 38.6% to 58.8%. However, the ACE inhibitory activities increased with the prolongation of the post-fermentation period; moreover, in the Vitis hybrid red wine, the ACE inhibitory activity reached its highest value, 76.9%, after 120 days of post-fermentation. During the fermentation and post-fermentation of all the red wines, fibrinolytic activity was weak or not detected. After 10 days of fermentation, Vitis labrusca B red wine exhibited the greatest antidementia $\beta$-secretase inhibitory activity of 54.8%, though $\beta$-secretase inhibitory activity decreased significantly to less than 10% during 120 days of post-fermentation. In conclusion, we obtained a highly valuable Vitis hybrid red wine that was fermented for 10 days at $25^{\circ}C$ with Vitis hybrid and S. cerevisiae K-7 and then post-fermentation for 120 days at $4^{\circ}C$.

Isolation and Characterization of the Strain Producing Angiotensin Converting Enzyme Inhibitor from Soy Sauce (간장으로부터 Angiotensin Converting Enzyme 활성 저해물질 생성 균주의 분리 동정)

  • 차명화;박정륭
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.4
    • /
    • pp.594-599
    • /
    • 2001
  • This study was attempted to isolate and identify the strain revealing high angiotensin converting enzyme (ACE) inhibitory activity from various soy fermented foods, i.e. meju, soybean paste and soy sauce. Forty-two strains with morphologically different characteristics were selected and the ACE inhibitory and proteolytic activities were examined. Of the strains tested, SS103 which was isolated from soy sauce showed the highest ACE inhibitory and proteolytic activities and was finally selected for further studies. The SS103 strain showed motility, rod form and ellipsoidal spores. The shape of colonies on the agar media was irregular, mucoidal and surface dull. The strain could grow under aerobic conditions of pH 5~9 and 10~$50^{\circ}C$. Main cellular fatty acid was $C_{15:0}$ anteiso, $C_{17:0}$ cis and $C_{17:0}$ iso, which was 33.9%, 18.8% and 16.5%, respectively. Based upon these morphological, biochemical and cultural properties, SS103 was identified as a Bacillus subtilis. Optimum cultural condition of Bacillus subtilis SS103 was pH 8.0, $37^{\circ}C$ and 48 hr.48 hr.

  • PDF

Characterization of Antihypertensive Angiotensin I-Converting Enzyme Inhibitor from Saccharomyces cerevisiae

  • KIM, JAE-HO;LEE, DAE-HYOUNG;JEONG, SEOUNG-CHAN;CHUNG, KUN-SUB;LEE, JONG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.6
    • /
    • pp.1318-1323
    • /
    • 2004
  • This study describes the purification and characterization of a novel antihypertensive angiotensin 1­converting enzyme (ACE) inhibitory peptide from Saccharomyces cerevisiae. Maximal production of the ACE inhibitor from Saccharomyces cerevisiae was obtained from 24 h of cultivation at $30^{\circ}C$ and its ACE inhibitory activity was increased by about 1.5 times after treatment of the cell-free extract with pepsin. After the purification of ACE inhibitory peptides with ultrafiltration, Sephadex G-25 column chromatography, and reverse-phase HPLC, an active fraction with an $IC_{50}$ of 0.07 mg and $3.5\%$ yield was obtained. The purified peptide was a novel decapeptide, showing very low similarity to other ACE inhibitory peptide sequences, and its amino acid sequence was Tyr-Asp-Gly-Gly-Val-Phe-Arg-Val-Tyr-Thr. The purified inhibitor competitively inhibited ACE and also showed a clear antihypertensive effect in spontaneously hypertensive rats (SHR) at a dosage of 1 mg/kg body weight.

Angiotensin- I Converting Enzyme Inhibitory Properties of Bovine Casein Hydrolysates in Different Enzymatic hydrolysis Conditions (효소가수분해 조건에 따른 우유 케이신의 Angiotensin-I 전환효소 저해효과)

  • 김현수;인영민;정석근;함준상;강국희;이수원
    • Food Science of Animal Resources
    • /
    • v.22 no.1
    • /
    • pp.87-93
    • /
    • 2002
  • Angiotensiri-I converting enzyme(ACE) catalyst the removal of the C-terminal dipeptide from the angiotensin-I to give the angiotensin-II, a potent peptide that causes constriction of regulation of blood pressure. Recently, ACE inhibitor peptides have been isolated from enzymatic digests of food protein. The aim of this study was to identify bovine casein hydrolysates with ACE inhibitory properties in different enzymatic hydrolysis conditions. The casein were hydrolyzed neutrase, alcalase, protamax, flavourzyme, premed 192, sumizyme MP, sumizyme LP and pescalase alone and with an enzyme combination. Premed 192 produced ACE inhibitory peptides most efficiently. In order to ACE inhibitory peptide produced enzymatic hydrolysis condition were premed 192 added to casein ratio of 1:100(w/w), and incubated at 47$\^{C}$ for 12hrs. Casein hydrolysate gave 50% inhibition(IC$\_$50/ value) of ACE activity at concentration with 248ug/ml(general method) and 265ug/ml(pretreatment method) respectively.

Purification and Characterization of Angiotensin I-Converting Enzyme Inhibitors from Sinapis alba L.

  • Yuk, Jin-Su;Lim, Young-Hee;Cho, Hong-Yon
    • Preventive Nutrition and Food Science
    • /
    • v.5 no.2
    • /
    • pp.75-80
    • /
    • 2000
  • To separate ACE inhibitors from edible plants, spices, and herbs, 285 extracts of 95 sources were screened for ACE inhibitory activity. The extract of Sinapis alba L. had the most potent ACE inhibitory activity. Mustard seeds were crushed homogeneously and extracted with hexane and water successively. Lyophilized water extract was fractionated with $H_2O$:butanol(1:1). The ACE inhibitor was purified from butanol fraction by methanol precipi-tation, gel filtration, HPLC, and FPLC with Superdex peptide HQ 10/30 column. The active fraction has been purified to homogeneity, which was proven by gel filtration using FPLC system. The yield was 0.02%. The com-pound has a molecular weight of about 640. The compound competitively inhibited ACE activity and the $IC_{50}$ value was 79$\mu\textrm{g}$/ml. The purified compound showed uterus contraction activity in isolated rat uterus.

  • PDF

Antioxidant and Angiotensin I Converting Enzyme Inhibitory Activities of Red Snow Crab Chionoecetes japonicas Shell Hydrolysate by Enzymatic Hydrolysis

  • Yoon, Na Young;Shim, Kil-Bo;Lim, Chi-Won;Kim, Sang-Bo
    • Fisheries and Aquatic Sciences
    • /
    • v.16 no.4
    • /
    • pp.237-242
    • /
    • 2013
  • We investigated the antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of red snow crab Chionoecetes japonicas shell (RSCS) hydrolysate by enzymatic hydrolysis and its molecular weight cut-off fractions. The RSCS hydrolysate was fractionated through two ultrafiltration membranes of 3 and 10 kDa cut-offs. Three fractions (<3 kDa, 3-10 kDa, and >10 kDa) were evaluated for total amino acid composition, antioxidant activities using 2'-azino-bis[3-ethylbenzthiazoline-6-sulfonic acid] ($ABTS^+$) radical scavenging and superoxide dismutase (SOD)-like activities and reducing power assays, and ACE inhibitory activity using Hou's method. Although all fractions showed activity, the <3 kDa fraction of RSCS hydrolysate exhibited the greatest $ABTS^+$ radical scavenging, SOD-like and ACE inhibitory activities. However, these fractions exhibited low reducing power. These results suggest that the low-molecular-weight enzymatic hydrolysate of RSCS could be used as a functional ingredient to control oxidative stress and ACE activity.

Antioxidant and angiotensin I-converting enzyme inhibitory activities of northern shrimp (Pandalus borealis) by-products hydrolysate by enzymatic hydrolysis

  • Kim, Sang-Bo;Yoon, Na Young;Shim, Kil-Bo;Lim, Chi-Won
    • Fisheries and Aquatic Sciences
    • /
    • v.19 no.7
    • /
    • pp.29.1-29.6
    • /
    • 2016
  • In the present study, we investigated to the antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities of the northern shrimp (Pandalus borealis) by-products (PBB) hydrolysates prepared by enzymatic hydrolysis. The antioxidant and ACE inhibitory activities of five enzymatic hydrolysates (alcalase, protamex, flavourzyme, papain, and trypsin) of PBB were evaluated by the 2, 2'-azino-bis [3-ethylbenzothiazoline-6-sulfonic acid] ($ABTS^+$) radical scavenging and superoxide dismutase (SOD)-like activities, reducing power and Li's method for ACE inhibitory activity. Of these PBB hydrolysates, the protamex hydrolysate exhibited the most potent ACE inhibitory activity with $IC_{50}$ value of $0.08{\pm}0.00mg/mL$. The PBB protamex hydrolysate was fractionated by two ultrafiltration membranes with 3 and 10 kDa (below 3 kDa, between 3 and 10 kDa, and above 10 kDa). These three fractions were evaluated for the total amino acids composition, antioxidant, and ACE inhibitory activities. Among these fractions, the < 3 kDa and 3-10 kDa fractions showed more potent $ABTS^+$ radical scavenging activity than that of > 10 kDa fraction, while the > 10 kDa fraction exhibited the significant reducing power than others. In addition, 3-10 kDa and > 10 kDa fractions showed the significant ACE inhibitory activity. These results suggested that the high molecular weight enzymatic hydrolysate derived from PBB could be used for control oxidative stress and prevent hypertension.