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Abstract 
We investigated the antioxidant and angiotensin I converting enzyme (ACE) inhibitory activities of red snow crab Chionoecetes 
japonicas shell (RSCS) hydrolysate by enzymatic hydrolysis and its molecular weight cut-off fractions. The RSCS hydrolysate 
was fractionated through two ultrafiltration membranes of 3 and 10 kDa cut-offs. Three fractions (<3 kDa, 3-10 kDa, and >10 kDa) 
were evaluated for total amino acid composition, antioxidant activities using 2′-azino-bis[3-ethylbenzthiazoline-6-sulfonic acid] 
(ABTS+) radical scavenging and superoxide dismutase (SOD)-like activities and reducing power assays, and ACE inhibitory activ-
ity using Hou’s method. Although all fractions showed activity, the <3 kDa fraction of RSCS hydrolysate exhibited the greatest 
ABTS+ radical scavenging, SOD-like and ACE inhibitory activities. However, these fractions exhibited low reducing power. These 
results suggest that the low-molecular-weight enzymatic hydrolysate of RSCS could be used as a functional ingredient to control 
oxidative stress and ACE activity.

Key words: Chionoecetes japonicas, Antioxidant activity, Ansiotensin I converting enzyme, Hydrolysate, Red snow crab shell

Introduction

Blood pressure is regulated by various controlling fac-
tors including angiotensin I converting enzyme (ACE, EC 
3.4.15.1). This enzyme is a bivalent dipeptidyl carboxyl me-
tallopeptidase, which converts angiotensin I, an inactive deca-
peptide produced from angiotensinogen, into angiotensin II, 
a vasoconstrictive octapepide, and inactivates the vasodilator 
bradykinin, thus interacting simultaneously with the renin-
angiotensin and kallinkrein-kinin systems (Mäkinen et al., 
2012). ACE inhibitors are one of the most effective methods 
for suppressing increases in blood pressure and have a long 
history of use, with interest in them continuing to increase 
(Pfeffer and Frohlich, 2006).

Oxidative stress occurs due to an imbalance between oxidiz-
ing species and natural antioxidants or antioxidant enzymes, 
and has been implicated in the occurrence of hypertension and 

a number of pathological conditions, including neurodegen-
erative diseases, diabetes, cancer, and aging (Beckman and 
Ames, 1998; Giasson et al., 2002). Reactive oxygen species 
(ROS), such as the superoxide anion radical (O2

−), hydrogen 
peroxide, and hydroxyl radicals (·OH) are generated from the 
sequential reduction of oxygen during respiration in aerobic 
organisms. ROS are highly unstable, and react rapidly with 
other substances, including DNA, membrane lipids and pro-
teins, and may cause cellular damage leading to apoptosis, ag-
ing, and inflammation (Je et al., 2009). Although the body has 
its own defense system against ROS, it cannot prevent oxida-
tive damage completely. Thus, food supplements containing 
antioxidants can be used to reduce oxidative damage.

 Red snow crab Chionoecetes japonicas, one of the most 
popular crab in Korea, is distributed widely in the deep-sea 
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was recirculated into the feed until the maximum permeate 
yield was reached. Permeate from the 10 kDa membrane was 
then filtered through the 3 kDa membrane with recirculation 
until the maximum permeate yield was reached. 

Degree of hydrolysis (DH)

The DH was calculated by determining free amino groups 
with o-phthaldialdehyde (Nielsen, 1999).

 DH = h/htot × 100

, where htot is the total number of peptide bonds per protein 
equivalent, and h is the number of hydrolyzed bonds. The htot 

factor is dependent on the amino acid composition of the raw 
material.

Total amino acids

The total amino acid composition was determined using 
an amino acid analyzer (S43000; Sykam, Eresing, Germa-
ny). Samples were hydrolyzed in 6 N hydrochloric acid in 
vacuum-sealed tubes at 110°C for 24 h. 

ABTS+ radical scavenging activity

ABTS+ radical scavenging activity was determined by mod-
ifying the method of Arnao et al. (2001). The stock solutions 
were 7.4 mM ABTS+ and 2.6 mM potassium persulfate. The 
working solution was prepared by mixing the two stock solu-
tions in equal quantities. The mixture was allowed to react for 
12 h at room temperature in the dark, followed by dilution by 
mixing 1 mL ABTS+ solution with 50 mL MeOH to an absor-
bance at 734 nm of 1.10 ± 0.02, as determined using a spec-
trophotometer (BioMate 5; Thermo Electron, Waltham, MA, 
USA). Fresh ABTS+ solution was prepared for each assay. A 
sample (150 μL) was mixed with 2.85 mL ABTS+ solution and 
the mixture was left in the dark for 2 h. The absorbance at 734 
nm was then measured using a spectrophotometer. Trolox was 
used as a positive control. ABTS+ radical scavenging activity 
was calculated using the following equation: 

Scavenging activity (%) = [1 – {(A – B) / C}] × 100

where, A = Absorbance of sample/Standard with reagent, 
B = Absorbance of sample/Standard without reagent, and C = 
Absorbance of the control.

Superoxide dismutase (SOD)-like activity 

The SOD-like activity of RSCS hydrolysate was deter-
mined using the method described by Marklund and Marklund 
(1974) with a slight modification. Briefly, 200 μL of sample 
solutions were mixed with 200 μL of pyrogallol solution (7.2 
mM in water) and 3 mL of 50 mM Tris-HCl buffer, at pH 8.5, 
containing 10 mM EDTA. After 10 min, 1 mL of 1 N HCl was 

at depths of 200 – 2,300 m in the waters around Korea and 
Japan (Lee et al., 1986). Crab processing by-products in the 
form of shells, heads, and feet account for as much as 80% of 
the total weight of the catch and comprise valuable and use-
ful components, such as proteins, lipids, and chitin (Shahidi, 
1994). Many researchers are interested in the utilization of 
protein-rich marine processing waste as nutraceuticals or nu-
tritional supplements due to their good nutritional properties 
and a wide range of essential amino acids (Chae et al., 1998; 
Guerard et al., 2001; Arvanitoyannis and Kassaveti, 2008).

The aim of this study was to determine the effect on anti-
oxidant and ACE activities of fractions of red snow crab shell 
(RSCS) hydrolysate of various molecular weights. 

Materials and Methods

Materials 

RSCS was purchased from a red snow crab processing 
plant (Sokcho, Korea) in July 2012. The lyophilized shell 
powder was stored in a freezer at -20°C until use. 2,2-azi-
no-bis (3-ethylbenzthiaxoline)-6-sulfonic acid (ABTS+), o-
phthaldialdehyde, pyrogallol, potassium persulfate, trolox, 
potassium ferricyanide, trichloroacetic acid, ferric chloride, 
angiotensin I converting enzyme, N-[3-(2-furyl) acryloyl]-
Phe-Gly-Gly (FAPGG), captopril, and L-ascorbic acid were 
purchased from Sigma Chemical Co. (St. Louis, MO, USA) 
and Alcalase 2.4 L was purchased from Novo Co. (Novo-
zyme Laboratories, Copenhagen, Denmark). All other re-
agents were of the highest grade available.

Enzymatic hydrolysis and fractionation

RSCS was used for enzymatic hydrolysis. Its crude protein 
content was 27.37% as determined by the Kjeldahl method. 
Alcalase 2.4 L was used to prepare RSCS protein hydroly-
sate under optimal conditions (50°C, pH 7.0). A sample (100 
g) and enzyme (0.27 g) were mixed and hydrolyzed at 50°C 
for 25 h. After 25 h, the mixture was heated at 100°C to inac-
tivate the enzyme. Unhydrolyzed proteins were removed by 
passing the hydrolysate through filter paper, and the superna-
tant was lyophilized (13.70 g) and stored at -20°C until use.

 The lyophilized hydrolysate (12.70 g) was dissolved in 
deionized water at 50 mg/mL. The solution was filtered by 
two ultrafiltration membranes (Amicon Ultra-4 filter devices; 
Millipore, Billerica, MA, USA) with 3 and 10 kDa molecu-
lar weight cut-offs (MWCO), yielding three fractions cor-
responding to molecular weights <3 kDa (5.80 g), 3-10 kDa 
(4.72 g), and >10 kDa (2.18 g). The soluble fractions were 
prepared by centrifuging at 3,000 rpm for 20 min and were 
passed through the membranes sequentially, beginning with 
the largest MWCO membrane cartridge (10 kDa). The reten-
tate and permeate were collected separately, and the retentate 
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Results and Discussion

Enzymatic hydrolysis and fractionation

The bioactive protein hydrolysates depend on the protein 
substrate used, the specificity of the enzyme used, the condi-
tions used during hydrolysis and the DH value (Nielsen, 1999; 
Kristinsson and Rasco, 2000). Because enzymes have specific 
cleavage positions on polypeptide chains, Alcalase has been 
used to produce bioactive peptides from processing by-prod-
ucts (Guerard et al., 2007). 

The extent of protein degradation by proteolytic enzymes 
was estimated by assessing the DH. As shown in Fig. 1, the 
rate of enzymatic hydrolysis of RSCS increased rapidly for the 
first 2 h and then entered a steady-state phase after 12 h with 
a DH of 12.5%. Alcalase hydrolysate was separated using two 
filters of MWCO 3 and 10 kDa to yield three fractions (<3 
kDa, 3-10 kDa, and >10 kDa).

Total amino acid composition

The total amino acid compositions of RSCS hydrolysate 
and its fractions are presented in Table 1. The total amino acid 
content of RSCS hydrolysate was 72.48 g/100 g, which was 
the highest of any fraction (Table 1). However, the total amino 
acid compositions of RSCS hydrolysate and its three fractions 
were similar. All hydrolysate fractions were rich in Glu, Asp, 
Gly, and Ala, but contained low levels of Met and Cys. 

The carboxyl ends of Glu, Met, Leu, Tyr, and Lys in the 
peptide linkages were found to be preferentially cleaved by 
Alcalase (Adamson and Reynolds, 1996). Of these, Glu was 
the major amino acid in RSCS hydrolysate, which made it a 
good substrate for Alcalase (Yang et al., 2011).

Antioxidant activity

Oxidative stress is a common risk factor in a number of 
chronic diseases, such as hypertension, diabetes, arthritis, 
neurodegenerative disease, and cardiovascular complications 

added to the above mixture to stop the reaction. L-ascorbic 
acid was used as a positive control. The absorbance was mea-
sured at 420 nm. SOD-like activity was calculated using the 
following equation: 

Scavenging activity (%) = [1 – {(A – B) / C}] × 100

where, A = Absorbance of sample/Standard with reagent, 
B = Absorbance of sample/Standard without reagent, and C = 
Absorbance of the control.

Reducing power 

Reducing power was evaluated by the method of Oyaizu 
(1986). Various sample concentrations (2.5 mL) were mixed 
with 2.5 mL of 200 mM sodium phosphate buffer (pH 6.6) 
and 2.5 mL of 1% potassium ferricyanide. After incubation 
at 50°C for 20 min, 2.5 mL of 10% trichloroacetic acid (w/v) 
were added. The mixture was then centrifuged at 2,000 g for 
10 min, and 5 mL of the upper layer were mixed with deion-
ized water and 1 mL of 0.1% ferric chloride. The sample con-
centration resulting in 0.5 of absorbance (EC50) was calculated 
from the graph of absorbance at 700 nm, which was measured 
using a spectrophotometer (BioMate 5). L-ascorbic acid was 
used as a positive control.

ACE inhibitory activity 

The inhibition of ACE activity was conducted accord-
ing to the method of Hou et al. (2003), and modified to use 
FAPGG as the substrate. In brief, FAPGG (0.5 mM) and vari-
ous concentrations of the samples were completely dissolved 
in 50 mM Tris-HCl buffer (pH 7.5). 20 μL of ACE (1 U/mL 
dissolved in 50 mM Tris-HCl buffer) were then mixed with 
200 μL of samples of various concentrations as experimental 
samples, or mixed with 50 mM Tris-HCl buffer as a negative 
control. Following the addition of 1 mL of 0.5 mM FAPGG to 
the reaction mixture, the optical density was determined after 
0 and 30 min at a wavelength of 345 nm. The ACE inhibitory 
activities were expressed as the 50% inhibition concentration 
(IC50). The values of percentage inhibition were then calcu-
lated using the equation:

Inhibitory activity (%) = {1 – (ODsample/0min – ODsample/30min ) /  
                                          (ODcontrol/0min – ODcontrol/30min)} × 100.

The antihypertensive agent captopril was used as a positive 
control.

Statistical analysis

The data were analyzed using analysis of variance through 
the general linear model procedure (SAS Institute, Cary, NC, 
USA). Duncan’s multiple-range test was applied to determine 
the significance of differences between means (P < 0.05).
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Fig. 1. The degree of hydrolysis (DH) of red snow crab shell hydrolysate 
by Alcalase.
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mL) > >10 kDa fr. (IC50 = 0.221 ± 0.002 mg/mL) (Table 2). 
Thus the <3 kDa fraction was the most potent scavenger of 
ABTS+ radicals. The 3-10 kDa and >10 kDa fractions, and 
RSCS hydrolysate, also exhibited noticeable scavenging ac-
tivity. 

SOD is an antioxidative enzyme that catalyzes the break-
down of the superoxide anion into oxygen and hydrogen per-
oxide. This is a widely used assay to predict the SOD-like an-
tioxidant activity, and is based inhibition of the auto-oxidation 
of pyrogallol. RSCS hydrolysate and the three MWCO frac-
tions exhibited SOD-like activity with IC50 values of 1.602 ± 
0.128, 1.180 ± 0.037, 1.580 ± 0.118, and 1.619 ± 0.242 mg/
mL, respectively (Table 2). Of these, the <3 kDa fraction 
showed the greatest SOD-like activity. However, all fractions 
exhibited lower SOD-like activity than the positive control, 
L-ascorbic acid.

 Reducing power is the ability to reduce ferric (Fe3+) to fer-
rous (Fe2+), which can be a direct correlation between antioxi-
dant activity and the reducing power of bioactive constituents 
(Dorman et al., 2003). 

The RSCS hydrolysate and its three fractions had electron 
donation capacity (Table 2). The <3 kDa fr. (IC50 = 2.836 ± 
0.242 mg/mL) exhibited the greatest reducing power. How-
ever, all fractions showed lower reducing power than the posi-
tive control, L-ascorbic acid.

 The differences in antioxidative activity among hydroly-
sates of different molecular weights might be due to their di-
verse amino acid compositions (Wu et al., 2003). Aromatic 
amino acids; i.e., Tyr, His and Phe (Chen et al., 1998; Raj-
apakse et al., 2005), and hydrophobic amino acids, comprising 
Val, Leu and Ala (Mendis et al., 2005), have been reported to 
play an important role in antioxidative activities. 

ACE inhibitory activity

The ACE activation causes a rise of blood pressure by in-
creasing vascular resistance and fluid volume, while ACE in-
hibitors exert an antihypertensive effect (Zhao and Li, 2009). 
Synthetic ACE inhibitors, including captopril, enalapril, alace-

(Bernardini et al., 2011; Je et al., 2005). Excessive production 
of ROS causes adverse effects in cells, such as oxidation of 
bio-molecules. Therefore, ROS production must be regulated 
by antioxidants and antioxidant systems (Himaya et al., 2012).

The antioxidant activities of RSCS hydrolysate and its three 
MWCO fractions were evaluated to determine their ABTS+ 
radical scavenging activity, SOD-like activity, and reducing 
power (Table 2). The <3 kDa fraction exhibited the greatest 
antioxidant activity. 

The scavenging activities of RSCS hydrolysate and its three 
fractions toward ABTS+ radicals were as follows: <3 kDa fr. 
(IC50 = 0.135 ± 0.006 mg/mL) > 3-10 kDa fr. (IC50 = 0.137 ± 
0.001 mg/mL) > RSCS hydrolysate (IC50 = 0.190 ± 0.011 mg/

Table 1. Total amino acid composition of RSCS hydrolysate and its mo-
lecular weight cut-off fractions (g/100 g)

Amino 
acids

RSCS 
hydrolysate

<3 kDa 3-10 kDa >10 kDa

Asp 8.18 5.81 8.13 6.47 
Thr 3.76 3.41 3.71 2.49 
Ser 4.27 3.82 4.22 4.15 
Glu 10.16 8.95 10.10 7.71 
Pro 4.77 2.76 4.72 0.42 
Gly 5.08 4.92 5.03 4.21 
Ala 4.72 5.14 4.67 3.64 
Cys 0.31 0.11 0.26 0.30 
Val 4.13 3.80 4.08 2.45 
Met 1.39 1.45 1.32 0.99 
Ile 2.33 2.11 2.28 1.35 
Leu 5.16 4.96 5.11 3.68 
Tyr 2.75 2.66 2.70 2.19 
Phe 3.27 3.29 3.22 2.47 
His 2.28 1.88 2.23 3.46 
Lys 5.18 4.09 5.13 3.88 
Arg 5.57 4.42 5.52 4.44 
Total 72.48 63.59 72.43 54.30 

RSCS, red snow crab shell.

Table 2. Antioxidant activities of RSCS hydrolysate and its molecular weight cut-off fractions 

Hydrolysate fractions ABTS+ radical scavenging activity
(IC50

*, mg/mL)
SOD-like activity

(IC50, mg/mL)
Reducing power
(EC50

*, mg/mL)

RSCS hydrolysate 0.190 ± 0.011b 1.602 ± 0.128a 5.629 ± 0.067b

<3 kDa 0.135 ± 0.006c  1.180 ± 0.037b 2.836 ± 0.242c

3-10 kDa 0.137 ± 0.001c 1.580 ± 0.118a 7.189 ± 0.109a

>10 kDa 0.221 ± 0.002a 1.619 ± 0.242a 7.964 ± 0.266a

Trolox† 0.075 ± 0.003d

L-ascorbic acid‡ 0.038 ± 0.008c   0.009 ± 0.0004d

RSCS, red snow crab shell; SOD, superoxide dismutase. 
*IC50 and EC50 values of ABTS+ radical scavenging and SOD-like activities, and reducing power were expressed as mean ± standard deviation (SD).
†,‡Trolox and L-ascorbic acid were used as positive controls of ABTS+ radical scavenging, SOD-like activities and reducing power, respectively.
a-dDifferent letters indicated the statistical difference (P < 0.05). 
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