• Title/Summary/Keyword: Android Security

Search Result 290, Processing Time 0.029 seconds

Healthcare and Emergency Response Service Platform Based on Android Smartphone

  • Choi, Hoan-Suk;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • v.16 no.1
    • /
    • pp.75-86
    • /
    • 2020
  • As the elderly population is becoming an aging society, the elderly are experiencing many problems. Social security costs for the elderly are increasing and the un-linked social phenomenon is emerging. Thus, the social infrastructure and welfare system established in the past economic growth period are in danger of not functioning properly. People socially isolated or with chronic diseases among the elderly are exposed to various accidents. Thus, an active healthcare management service is imperative. Additionally, in the event of a dangerous situation, the system must have ways to notify guardians (family or medical personnel) regarding appropriate action. Thus, in this paper, we propose the smartphone-based healthcare and emergency response service platform. The proposed service platform aggregates movement of relevant data in real-time using a smartphone. Based on aggregated data, it will always recognize the user's movements and current state using the human motion recognition mechanism. Thus, the proposed service platform provides real-time status monitoring, activity reports, a health calendar, location-based hospital information, emergency situation detection, and cloud messaging server-based efficient notification to several subscribers such as family, guardians, and medical personnel. Through this service, users or guardians can augment the level of care for the elderly through the reports. Also, if an emergency situation is detected, the system immediately informs guardians so as to minimize the risk through immediate response.

An image analysis system Design using Arduino sensor and feature point extraction algorithm to prevent intrusion

  • LIM, Myung-Jae;JUNG, Dong-Kun;KWON, Young-Man
    • Korean Journal of Artificial Intelligence
    • /
    • v.9 no.2
    • /
    • pp.23-28
    • /
    • 2021
  • In this paper, we studied a system that can efficiently build security management for single-person households using Arduino, ESP32-CAM and PIR sensors, and proposed an Android app with an internet connection. The ESP32-CAM is an Arduino compatible board that supports both Wi-Fi, Bluetooth, and cameras using an ESP32-based processor. The PCB on-board antenna may be used independently, and the sensitivity may be expanded by separately connecting the external antenna. This system has implemented an Arduino-based Unauthorized intrusion system that can significantly help prevent crimes in single-person households using the combination of PIR sensors, Arduino devices, and smartphones. unauthorized intrusion system, showing the connection between Arduino Uno and ESP32-CAM and with smartphone applications. Recently, if daily quarantine is underway around us and it is necessary to verify the identity of visitors, it is expected that it will help maintain a safety net if this system is applied for the purpose of facial recognition and restricting some access. This technology is widely used to verify that the characters in the two images entered into the system are the same or to determine who the characters in the images are most similar to among those previously stored in the internal database. There is an advantage that it may be implemented in a low-power, low-cost environment through image recognition, comparison, feature point extraction, and comparison.

A Cross-Platform Malware Variant Classification based on Image Representation

  • Naeem, Hamad;Guo, Bing;Ullah, Farhan;Naeem, Muhammad Rashid
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3756-3777
    • /
    • 2019
  • Recent internet development is helping malware researchers to generate malicious code variants through automated tools. Due to this reason, the number of malicious variants is increasing day by day. Consequently, the performance improvement in malware analysis is the critical requirement to stop the rapid expansion of malware. The existing research proved that the similarities among malware variants could be used for detection and family classification. In this paper, a Cross-Platform Malware Variant Classification System (CP-MVCS) proposed that converted malware binary into a grayscale image. Further, malicious features extracted from the grayscale image through Combined SIFT-GIST Malware (CSGM) description. Later, these features used to identify the relevant family of malware variant. CP-MVCS reduced computational time and improved classification accuracy by using CSGM feature description along machine learning classification. The experiment performed on four publically available datasets of Windows OS and Android OS. The experimental results showed that the computation time and malware classification accuracy of CP-MVCS was higher than traditional methods. The evaluation also showed that CP-MVCS was not only differentiated families of malware variants but also identified both malware and benign samples in mix fashion efficiently.

Digitalization of Seafarer's Book for Authentication and e-Navigation

  • Huh, Jun-Ho;Seo, Kyungryong
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.217-232
    • /
    • 2019
  • Currently, the crew working on a ship is required to carry a seafarer's book in most countries around the world, including the Republic of Korea (ROK). Yet, many fishermen working in the international waters of the ROK do not abide by this rule as the procedure of obtaining it is rather inconvenient or they do not understand the necessity or the benefits of having it. Also, as the regulation of carrying the certificate has been strengthened, it is important for them to avoid making a criminal record unintentionally. This study discusses the digitalization of the seafarer's book based on several security measures in addition to BLE Beacon-based positioning technology, which can be useful for the e-Navigation. Normally, seamen's certificates are recorded by the captain, medical institution, or issuing authority and then kept in an onboard safe or a certificate cabinet. The material of the certificates is a cloth that can withstand salinity as the certificate could be contaminated by mold. In the past, the captains and their crews were uncooperative when the ROK's maritime police tried to inspect several ships simultaneously because of the time and cost involved. Thus, a system with which the maritime police will be able to conveniently manage the crews is proposed.

The Design, Implementation, Demonstration of the Architecture, Service Framework, and Applications for a Connected Car

  • Kook, Joongjin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.2
    • /
    • pp.637-657
    • /
    • 2021
  • While the conventional vehicle's Head-Units played relatively simple roles (e.g., control of heating ventilation and air conditioning, the radio reception), they have been evolving into vehicle-driver interface with the advent of the concept of Connected Car on top of a rapid development of ICT technology. The Head-Unit is now successfully extended as an IVI (In Vehicle Infotainment) that can operate various functions on multimedia, navigation, information with regards to vehicle's parts (e.g. air pressure, oil gauge, etc.). In this paper, we propose a platform architecture for IVI devices required to achieve the goal as a connected car. Connected car platform (CoCaP) consists of vehicle selective gateway (VSG) for receiving and controlling data from major components of a vehicle, application framework including native and web APIs required to request VSG functionality from outside, and service framework for driver assistance. CoCaP is implemented using Tizen IVI and Android on hardware platforms manufactured for IVI such as Nexcom's VTC1010 and Freescale's i.MX6q/dl, respectively. For more practical verification, CoCaP platform was applied to an real-world finished vehicle. And it was confirmed the vehicle's main components could be controlled using various devices. In addition, by deriving several services for driver assistance and developing them based on CoCaP, this platform is expected to be available in various ways in connected car and ITS environments.

State of the Art of Anti-Screen Capture Protection Techniques

  • Lee, Young;Hahn, SangGeun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.5
    • /
    • pp.1871-1890
    • /
    • 2021
  • The transition toward a contactless society has been rapidly progressing owing to the recent COVID-19 pandemic. As a result, the IT environment of organizations and enterprises is changing rapidly; in particular, data security is expanding to the private sector. To adapt to these changes, organizations and companies have started to securely transfer confidential data to residential PCs and personally owned devices of employees working from home or from other locations. Therefore, organizations and companies are introducing streaming data services, such as the virtual desktop infrastructure (VDI) or cloud services, to securely connect internal and external networks. These methods have the advantage of providing data without the need to download to a third terminal; however, while the data are being streamed, attacks such as screen shooting or capturing are performed. Therefore, there is an increasing interest in prevention techniques against screen capture threats that may occur in a contactless environment. In this study, we analyze possible screen capture methods in a PC and a mobile phone environment and present techniques that can protect the screens against specific attack methods. The detection and defense for screen capture of PC applications on Windows OS and Mac OS could be solved with a single agent using our proposed techniques. Screen capture of mobile devices can be prevented by applying our proposed techniques on Android and iOS.

Android Botnet Detection Using Hybrid Analysis

  • Mamoona Arhsad;Ahmad Karim
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.704-719
    • /
    • 2024
  • Botnet pandemics are becoming more prevalent with the growing use of mobile phone technologies. Mobile phone technologies provide a wide range of applications, including entertainment, commerce, education, and finance. In addition, botnet refers to the collection of compromised devices managed by a botmaster and engaging with each other via a command server to initiate an attack including phishing email, ad-click fraud, blockchain, and much more. As the number of botnet attacks rises, detecting harmful activities is becoming more challenging in handheld devices. Therefore, it is crucial to evaluate mobile botnet assaults to find the security vulnerabilities that occur through coordinated command servers causing major financial and ethical harm. For this purpose, we propose a hybrid analysis approach that integrates permissions and API and experiments on the machine-learning classifiers to detect mobile botnet applications. In this paper, the experiment employed benign, botnet, and malware applications for validation of the performance and accuracy of classifiers. The results conclude that a classifier model based on a simple decision tree obtained 99% accuracy with a low 0.003 false-positive rate than other machine learning classifiers for botnet applications detection. As an outcome of this paper, a hybrid approach enhances the accuracy of mobile botnet detection as compared to static and dynamic features when both are taken separately.

Android Malware Analysis Technology Research Based on Naive Bayes (Naive Bayes 기반 안드로이드 악성코드 분석 기술 연구)

  • Hwang, Jun-ho;Lee, Tae-jin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.5
    • /
    • pp.1087-1097
    • /
    • 2017
  • As the penetration rate of smartphones increases, the number of malicious codes targeting smartphones is increasing. I 360 Security 's smartphone malware statistics show that malicious code increased 437 percent in the first quarter of 2016 compared to the fourth quarter of 2015. In particular, malicious applications, which are the main means of distributing malicious code on smartphones, are aimed at leakage of user information, data destruction, and money withdrawal. Often, it is operated by an API, which is an interface that allows you to control the functions provided by the operating system or programming language. In this paper, we propose a mechanism to detect malicious application based on the similarity of API pattern in normal application and malicious application by learning pattern of API in application derived from static analysis. In addition, we show a technique for improving the detection rate and detection rate for each label derived by using the corresponding mechanism for the sample data. In particular, in the case of the proposed mechanism, it is possible to detect when the API pattern of the new malicious application is similar to the previously learned patterns at a certain level. Future researches of various features of the application and applying them to this mechanism are expected to be able to detect new malicious applications of anti-malware system.

Medical Information Dynamic Access System in Smart Mobile Environments (스마트 모바일 환경에서 의료정보 동적접근 시스템)

  • Jeong, Chang Won;Kim, Woo Hong;Yoon, Kwon Ha;Joo, Su Chong
    • Journal of Internet Computing and Services
    • /
    • v.16 no.1
    • /
    • pp.47-55
    • /
    • 2015
  • Recently, the environment of a hospital information system is a trend to combine various SMART technologies. Accordingly, various smart devices, such as a smart phone, Tablet PC is utilized in the medical information system. Also, these environments consist of various applications executing on heterogeneous sensors, devices, systems and networks. In these hospital information system environment, applying a security service by traditional access control method cause a problems. Most of the existing security system uses the access control list structure. It is only permitted access defined by an access control matrix such as client name, service object method name. The major problem with the static approach cannot quickly adapt to changed situations. Hence, we needs to new security mechanisms which provides more flexible and can be easily adapted to various environments with very different security requirements. In addition, for addressing the changing of service medical treatment of the patient, the researching is needed. In this paper, we suggest a dynamic approach to medical information systems in smart mobile environments. We focus on how to access medical information systems according to dynamic access control methods based on the existence of the hospital's information system environments. The physical environments consist of a mobile x-ray imaging devices, dedicated mobile/general smart devices, PACS, EMR server and authorization server. The software environment was developed based on the .Net Framework for synchronization and monitoring services based on mobile X-ray imaging equipment Windows7 OS. And dedicated a smart device application, we implemented a dynamic access services through JSP and Java SDK is based on the Android OS. PACS and mobile X-ray image devices in hospital, medical information between the dedicated smart devices are based on the DICOM medical image standard information. In addition, EMR information is based on H7. In order to providing dynamic access control service, we classify the context of the patients according to conditions of bio-information such as oxygen saturation, heart rate, BP and body temperature etc. It shows event trace diagrams which divided into two parts like general situation, emergency situation. And, we designed the dynamic approach of the medical care information by authentication method. The authentication Information are contained ID/PWD, the roles, position and working hours, emergency certification codes for emergency patients. General situations of dynamic access control method may have access to medical information by the value of the authentication information. In the case of an emergency, was to have access to medical information by an emergency code, without the authentication information. And, we constructed the medical information integration database scheme that is consist medical information, patient, medical staff and medical image information according to medical information standards.y Finally, we show the usefulness of the dynamic access application service based on the smart devices for execution results of the proposed system according to patient contexts such as general and emergency situation. Especially, the proposed systems are providing effective medical information services with smart devices in emergency situation by dynamic access control methods. As results, we expect the proposed systems to be useful for u-hospital information systems and services.

Implementation of a unified live streaming based on HTML5 for an IP camera (IP 카메라를 위한 HTML5 기반 통합형 Live Streaming 구현)

  • Ryu, Hong-Nam;Yang, Gil-Jin;Kim, Jong-Hun;Choi, Byoung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.99-104
    • /
    • 2014
  • This paper presents a unified live-streaming method based on Hypertext Mark-up Language 5(HTML5) for an IP camera which is independent of browsers of clients and is implemented with open-source libraries. Currently, conventional security systems based on analog CCTV cameras are being modified to newer surveillance systems utilizing IP cameras. These cameras offer remote surveillance and monitoring regardless of the device being used at any time, from any location. However, this approach needs live-streaming protocols to be implemented in order to verify real-time video streams and surveillance is possible after installation of separate plug-ins or special software. Recently, live streaming is being conducted through HTML5 using two different standard protocols: HLS and DASH, that works with Apple and Android products respectively. This paper proposes a live-streaming approach that is linked on either of the two protocols which makes the system independent with the browser or OS. The client is possible to monitor real-time video streams without the need of any additional plug-ins. Moreover, by implementing open source libraries, development costs and time were economized. We verified usefulness of the proposed approach through mobile devices and extendability to other various applications of the system.