
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, Mar. 2024 704
Copyright ⓒ 2024 KSII

This research is not supported by any research grant and there is no conflict of interests among all others

http://doi.org/10.3837/tiis.2024.03.010 ISSN : 1976-7277

Android Botnet Detection Using Hybrid
Analysis

Mamoona Arhsad1*, and Ahmad Karim1

1 Department of Information Technology, Bahauddin Zakariya University,
Multan, 60000, Pakistan

[e-mail: msmamoona@outlook.com, ahmadkarim@bzu.edu.pk]
*Corresponding author: Mamoona Arshad

Received June 24, 2022; revised August 2, 2023; accepted January 1, 2024;

published March 31, 2024

Abstract

Botnet pandemics are becoming more prevalent with the growing use of mobile phone
technologies. Mobile phone technologies provide a wide range of applications, including
entertainment, commerce, education, and finance. In addition, botnet refers to the collection
of compromised devices managed by a botmaster and engaging with each other via a command
server to initiate an attack including phishing email, ad-click fraud, blockchain, and much
more. As the number of botnet attacks rises, detecting harmful activities is becoming more
challenging in handheld devices. Therefore, it is crucial to evaluate mobile botnet assaults to
find the security vulnerabilities that occur through coordinated command servers causing
major financial and ethical harm. For this purpose, we propose a hybrid analysis approach that
integrates permissions and API and experiments on the machine-learning classifiers to detect
mobile botnet applications. In this paper, the experiment employed benign, botnet, and
malware applications for validation of the performance and accuracy of classifiers. The results
conclude that a classifier model based on a simple decision tree obtained 99% accuracy with
a low 0.003 false-positive rate than other machine learning classifiers for botnet applications
detection. As an outcome of this paper, a hybrid approach enhances the accuracy of mobile
botnet detection as compared to static and dynamic features when both are taken separately.

Keywords: Machine Learning, Botnet Applications, Malware, Dynamic, Static

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 705

1. Introduction

Nowadays, Android devices have become increasingly significant in modern life because of
the capabilities provided by smartphones and the explosive growth in computational capacity.
People prefer to do financial transactions on their cell phones or mobile devices and save
sensitive data on handheld devices as a substitute for PCs [1]. Because of the nature of its
operating system ecosystem, mobile devices have become a specific target for cybercriminals.
In addition, smartphone users can get apps from google play stores, third-party and web
browsers such as torrents, and direct Internet [2].
 The research study [3] demonstrated that the third-party market contains 5-8 percent of
malicious apps. In third-party platforms, programmers and developers can lunch any
dangerous or clean applications in the market. For this purpose, the Android platform provides
various security platforms such as Bouncer as the first security step for all apps [4].
Unfortunately, cybercriminals can still modify the security measures and use malicious app
installation methods for the attack [5, 6]. Moreover, cyber attackers publish their harmful
softwares on the third parties platforms in the form of malicious codes. In most cases, a
platform of Android apps offers apps that are free, non-paying, or less expensive than the
Google Play Store.

Android malware is designed to infect mobile phones rather than PCs for gaining access to
Android devices without the user's knowledge. Meanwhile, a mobile botnet refers to a network
made up of a group of infected mobile devices, controlled by a self-replicating backdoor
program [7]. Eventually, it allows hackers to remotely manipulate mobile devices and execute
orders to carry out malicious actions with the use of a platform, such as a Command and
Control (C&C) server to control and instruct bots. In addition, attackers or hackers are known
as botmasters that control their command-and-control channel to send, update, and obtain
information about end users. These types of attacks can infect Android smartphones and turn
into harmful bots. These malicious bots turn into large botnets. The botnets are usually divided
into subgroups such as botmasters, bot clients, and bot servers. The botmaster is in charge of
the botnet’s controller and operator known as malware management as shown in Fig. 1.

Fig. 1. Workflow of Botnet

 The attackers (botmasters) launch an attack systematically. The botmaster's initial action is
to infect a victim with a bot. The Bot Clients host the botnet wishes to command and control

706 Arhsad et al.: Android Botnet Detection Using Hybrid Analysis

the botmaster's target device. Using C&C infrastructure, the C&C server accepts commands
from the botmaster and controls the issues that are ordered to the bot client through protocols
such as HTTP or IRC, used for establishing the connection between the server and the bot
client. After establishing the connection, then the C&C server sends commands to the victims,
who carry them out and report back to the C&C server. Consequently, the C&C server contains
various malicious activities including phishing, spamming, virus, email clicking, advertising,
and text messages without the owner's permission. Therefore, the main objective of this paper
is the detection of malicious applications in devices through C&C servers that are arranged by
botmasters [8].
 Many researchers used two common techniques of mobile malware analysis such as code-
based and runtime analyses. In static analysis or code based, the research study [9] states that
evaluating codes of applications for defects, back doors, or other malicious activities could
allow hackers to access sensitive data or client information. It starts with the disassembly of
the program using reverse engineering tools and attributes such as byte sequences, Permissions,
API calls, string codes, and function calls. In comparison, dynamic analysis [10] extracts
features in runtime behavior that must be executed in a safe environment (called a sandbox).
 In this paper, we have worked on both static and dynamic analysis approaches to Android
applications by comparing them with malware, benign and botnet application. For this purpose,
we collected the most popular and comprehensive features such as permissions and API calls
used by previous researchers [9] for mobile malware detection in general. To extract and
process features, employed the reverse engineering approach. After Feature Extractions, Used
hybrid analysis technique and tested it with machine learning classifiers such as SVM with
SMO, Naïve Bayesian, Random Forest, decision tree, and Multilayer Perceptron (MLP). Our
paper on a hybrid analysis is that it is a more successful approach of detecting mobile botnet
applications. The rest of this paper is organized as follows: Section 2 summarizes the related
work. Section 3 describes the proposed methodology with reverse engineering, feature
selection and extraction techniques. Section 4 presents the results and discussion with the past
papers analysis. Section 5 concludes the paper and Future work.

2. Related Work
In recent years, the field of Android malware analysis has attracted the attention of many
researchers. Generally, the majority of existing solutions are designed based on static and
dynamic analysis for mobile malware in general rather than mobile bot malware. In contrast,
hybrid analysis is a combination of static and dynamic analyses in which relevant features are
extracted and the analysis produces a significantly better outcome. For this purpose, we have
used a hybrid analysis approach to avoid the limitation of static and dynamic analysis such as
code obfuscation technique and virtualized environment.
 The motivation of researchers behind malware detection is different e.g., to acquire
unauthorized access, obstruct resource use, demand a ransom, use a root vulnerability, spread
spam, and create a botnet. Therefore, in this paper, we mainly discuss the Android botnet
dilemma, which has gained attraction in recent years due to cybercriminal attacks on
smartphones and handheld devices. Moreover, cybercriminals can launch different attacks by
creating a single bot network device on mobile devices through Controller (C&C). As a result,
we compared our results with mobile malware in general because the Android botnet problem
is still not as well-known as the PC-based botnet.
 Malicious hackers frequently use hazardous permission sets to exploit devices by taking full
advantage of people with a lack of understanding of the complexities associated with the user's

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 707

permission. In [11], the authors used a static analysis approach, the prominent permissions are
first extracted from AndroidManifest.xml of 436 Android applications on their dangerous
usage. For the accuracy of results, the researchers used a future pruning method after feature
extraction. However, the static analysis approach was not able to extract comprehensive code
features and gives greater false positive results.
 Choi et al. [12] presented another Android botnet detection approach using virtual private
networks (VPN). The authors used VPN to observe the total number of bytes and packets by
investigating C&C communication flow. Through the communication flow of the C&C
channel, they observed the characteristics of Android botnet applications. On the other hand,
another study [13] used a static analysis approach for the detection of zero-day attacks in
Android applications.
 In [14], the authors proposed a hybrid analysis approach called Droid Ranger. Initially, the
application binaries are chosen based on the use of the hazardous permission set. Then, the
behavior of malicious binaries is compared with known malware samples based on Android
applications manifest, packages, function call graphs, and code execution.
 In a dynamic analysis approach called Vet Droid [15] in which the authors selected harmful
permissions from applications. Firstly, the authors extracted all permissions from the
component VetDroid and make a relationship among the features. Another approach [17]
presented a framework of static analysis for the detection of Android malicious binaries. They
selected features for analysis such as permissions, functions, and intents. Next, the authors
pointed out the significance of short messages (SM) in the detection of malicious applications.
 The authors [18] designed an anomaly-based approach working for the detection of Android
applications using system calls. They used machine learning classification algorithms on host
machines to identify unusual behavior in Android apps using system calls as a feature vector.
Furthermore, it uses dynamic aspects of known malware (self-generated) and machine learning
to detect botnet behavior. The approach can detect malicious binaries with 92 % accuracy
using only dynamic information as input.

In a recent study [19] the authors used the Vennabers predictor, K-nearest neighbor (KNN),
and Kernel Density Estimation to study botnet network traffic flow (KDE). They
examined botnet families based on HTTP, IRC, and P2P that analyze network events based on
the botnet life cycle. In another research study [20], the authors described a hybrid analytical
strategy that combines static and dynamic analysis. The evaluation findings demonstrate that
hybrid analysis outperforms through different machine learning classifier techniques,
including J48, Naive Bayes, Random Forest, and Logistic Regression. This research has a few
similarities to our methodology. However, we have used 100 instances of botnet, benign, and
malware applications whereas the said approach used 30 instances of Android botnet
applications. The authors claimed that random forest outperforms as compared to other
classifier models with a classification accuracy of more than 90%. On the other hand, we are
addressing hybrid aspects of Android applications utilizing machine learning techniques of
SVM with SMO, MLP, Random Forest, Naïve Bayesian, and decision trees to detect botnet
applications.

3. Proposed Methodology

In this section, we describe the proposed methodology of Android botnet detection. It is
divided into three stages: Data collection, Data preparation, and Classifiers Evaluation. In the
first stage, we will collect Android applications from different categories which include benign
botnet, and malware set of applications. In the second stage, applications are prepared to carry

708 Arhsad et al.: Android Botnet Detection Using Hybrid Analysis

out analysis, initially reverse-engineered, reconstruct the source code of application and then
the apps are examined using a hybrid analysis technique. Usually, apps are passed through a
hybrid analysis approach to extract and select static [21] and dynamic features [10] using a
self-developed Python script that uses self-regulating tools such as Androguard [16] and
Droidbox [22]. In addition, the extracted features are stored in the comma-separated values
files. After feature extraction, Classifiers Evaluation is employed to train the various ML
classifiers such as SVM, DT, RF, NB, and ANN for detection of the Android botnet application.
In the last stage, we will analyze the results of classifier validation produced by using machine
learning classifiers. Fig. 2 shows the workflow of the proposed methodology.

Fig. 2. Workflow of Proposed Methodology

3.1 Data Collection (Stage 1)
The first phase of the proposed methodology is data collection. To complete our analysis work,
we have gathered 100 samples of mobile applications from various categories (benign,
malware, and botnet) and performed a hybrid analytic strategy that combines static and
dynamic techniques. For an experiment, we consider a dataset of real Android botnet and
malware [23] which is the largest dataset freely available on the internet. Meanwhile, for
benign, 10 samples are obtained from internet repositories, including the Google Play Store.
Table 1 shows the summary of the dataset.

 Table 1. Summary of dataset

Samples Number of apps Observation Features
Botnet 70 Static/dynamic 56
Malware 20 Static/dynamic 56
Benign 10 Static/dynamic 56

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 709

3.2 Data Preparation (stage 2)
In this stage, we have focused on static and dynamic feature extraction and selection analysis
in Android devices for data preparation. For this purpose, we have used a reverse engineering
technique which is based on machine code that is called android package kit (APK) and saved
as a zip file. To access the contents of the Android package File, we have used the Android
asset packaging tool (AAPT) available within the Android SDK. An APK File contains normal
Classes.dex, Android Manifest.XML, res, lib, and assets folders.
 We have performed our experimentation on a virtual machine of the SANTOKU operating
system (a Linux distribution system) that is built primarily for mobile analysis, using hardware
with Intel(R) Core (TM) and 16GB RAM. More specifically, the proposed framework was
implemented using Android SDK, AAPT, Androguard, and Droid box tools for Data
Preparation of Android applications. The basic framework of Data Preparation is illustrated in
Fig. 3.

Fig. 3. Dataset Preparation

710 Arhsad et al.: Android Botnet Detection Using Hybrid Analysis

3.2.1 Features Selection
During the review process of applications, we have selected Classes. dex and android
manifest.XML files in our work. In addition, Features are analyzed using static and dynamic
analysis approaches. Static analysis is a lightweight approach as compared to the dynamic
analysis approach. In the first step, we examine the feature set values associated with botnet,
benign, and malware apps, reverse engineering them, and extract Classes. dex and Android
Manifest.XML Files. To the best of our knowledge, Classes. dex includes information about
API calls, whereas the Android Manifest file contains data about permissions and intents, and
the remaining are command strings. For botnet detection, we choose Permissions and API
Calls for the analysis of malicious applications.

• Permission: The main objective of permissions is to protect the privacy of users.
Initially, the apps must seek approval for permission to access sensitive information
and system attributes from the user. Sometimes, the system provides approval for
permissions on its own or could encourage the users to approve the request. As we
already mentioned in the feature selection process, Permission is used in the
AndroidManifest. XML. For our analysis, a total of 13 permissions are selected from
androidmnifest.xml using a self-developed Python script from the existing literature
and Android official sites which indicates that these features are more prevalent in
harmful applications.[10, 24]

• API Calls: API Calls are used for interacting with the Android device. It contains
methods, classes, and packages that developers can use to create apps. The source
code of the Android programming language is based on Java and transforms source
code into Java bytecode. After the decompilation of Java bytecode, it uses Dalvik
Virtual Machine (DVM) to provide information about packages, methods, and classes.
For our analysis, we choose aapt tool to extract API Calls from classes.dex files. In
addition, a total of 26 API calls are selected using a self-developed Python script and
stored in a CSV file for further analysis.

3.2.2 Feature Extraction
In this section, we have analyzed static and dynamic features to identify interesting
characteristics of benign, botnet, and malware applications.

3.2.2.1 Static Features
In static analysis, our feature set values contain API calls and permissions having a close
relationship with botnets, malware, and benign application. For our work, we have observed
the interrelationship phases between features of Permissions, API, and their reasoning for the
botnet activities are described in Table 2. To extract features automatically, we used a Python
script on each Android binary code and recorded all features in a CSV file for further work.
The feature values in CSV files are binary numbers, with "1" and "0" denoting applications
that enable or disable features. For this purpose, we have observed all enabled attributes to
better classify our malicious dataset with clean programs. As a result, for our analysis, the
features are saved as "1" if the application has a specific feature enabled and "0" otherwise.
Assume that a and b are the number of apps and the set of features, respectively (which
includes Permission and API calls). Similarly, the class of application instances in the
produced dataset is assumed to be benign, malicious, or botnet which indicates the permission

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 711

and API.
Let x and y be the number of applications and the set of features (including

permissions and API calls, respectively. The feature vector for the application (𝑎𝑎𝑖𝑖,1,𝑎𝑎𝑖𝑖,2,
𝑎𝑎𝑖𝑖,3…………………. 𝑎𝑎𝑖𝑖,𝑗𝑗) Where:
 𝑎𝑎𝑖𝑖𝑖𝑖 = {1 if application x uses feature k otherwise 0

Table 2. Selected Feature Set and Their Reasoning
Permissions API Calls Reasoning
INTERNET openConnection(),

execute(),
connect(),openStream(),
getInputStream(),
Socket(),
getContent()

In the first phase of the connection,
Cybercriminals can connect to the internet
and broadcast to the rest of the world through
an open stream, Moreover, they receive
information from users.

READ_
PHONE_
STATE

getDeviceId(),
getSimSerialNumber(),
getSubscriberId(),
getLine1Number

After establishing the connection, Virus
programmers obtain information about a
phone's current state. It is a read-only
Permission

ACCESS_
NETWORK_
STATE

getActiveNetworkInfo()
getNetworkInfo()

For establishing the connection between the
phone state and network state, this
permission works like a bridge.

ACCESS
COARSE
LOCATION

getCellLocation() For finding locations of network sources, the
permission permits the malware to access the
information.

SEND_ SMS

getDefault()
sendTextMessage()

This permission allows the application to
send SMS messages to C&C servers without
the need for user participation.

ACCESS_
WIFI_ STATE

getCellLocation() For getting the information of Wifi, the
malware writers use this feature and send it
to a remote location

ACCESS_
FINE_
LOCATION

getLastKnownLocation(),
isProviderEnabled(),
requestLocationUpdates()

This feature enables an application in the
C&C server to get an accurate position from
GPS, WIFI, or cell towers.

READ_
CONTACTS

openOutputStream()
openInputStream()
openFileDescriptor()

An application can read a user's contact
information using this feature. After that, the
information is given to the C&C server, who
will carry out the attack

READ_ LOGS exec() An application can use this feature to access
system log files.

 Generally, after selecting features, we divided the operational stages of botnets into phases
based on their malevolent actions. These states are characterized as (a) connection phase, (b)
communication phase, and (c) status information phase. For instance, one of the common
phases is the connection phase where applications have a malicious intention accompanied by
INTERNET Permission and bulk of API Calls. For establishing the connection, the
negotiations and intersections happen in C &C server mechanism for malicious intentions. For

712 Arhsad et al.: Android Botnet Detection Using Hybrid Analysis

this purpose, cyber criminals use the direction of information and communication protocol. In
the second phase, communication protocols are used for pushing and pulling information from
users. These communication protocols of botnet applications are HTTP, IRC, and P2PP.
Additionally, these protocols often lead to the start of harmful action. As a result, we have
highlighted only those features that can lead to communication and assault initiation. For this
purpose, we have selected READ_CONTACTS, READ_LOGS, and SEND_SMS
Permissions in our paper. On the other hand, the API calls are openInputStream,
openOutputStream, openFileDescriptor, exec, getDefault, and sendTextMessage. For getting
the status information of the user, the cybercriminals must keep an eye on the device's active
status as well as changing network conditions in the third phase of botnet applications.

3.2.2 Dynamic Features Extraction
Behavior or dynamic analysis is shipped with the app itself or loading at runtime to examine
the behavior of apps. For this purpose, we have used the dynamic analysis framework of
DroidBox which shows the behavior of Android applications of botnet, benign, and malware
datasets. For example, network operations are used for establishing a remote connection
between opened connections and the read/ write state, the majority of such behavior is caused
to initiate a malevolent action in Android applications. Therefore, we have selected those
features that cause botnet attacks on our work. In consequence, these features are file activity
read, network operations, information leaks, services, SMS, DNS traffic, and HTTP traffic,
described in Table 3 in terms of features, parameters, and rationale.

Table 3. Dynamic Extracted Features
Features Parameters Rationale
File Activity Read Read, Write The applications are edited

and changed by hacktivists
who read the file activity for
malevolent action.

Network Operations Opened Connections,
Network Read,
Network Write

This feature is used for
establishing the remote
connection between network
operations

Information Leaks File Leaks, Data Leaks It monitors the network for
information and file leaks.

Services Started Services Malicious programs start
background services.

SMS Sent SMS This capability is critical for
identifying SMS-based
botnets.

DNS Traffic DNS Requests A botnet assault is indicated
by frequent DNS requests.

HTTP Traffic HTTP Conversations, HTTP
Connection attempts

This functionality is used by
HTTP-based botnets to make
TCP-based connections with
the outside world.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 713

4. Results and Discussion
In this section, we have examined and discussed the experiment. Initially, we observed code-
based and runtime features among existing botnet, malware, and benign applications to
emphasize the importance of botnet applications in Android devices. For this reason, we have
used evaluation features for API and Permission in Android applications. In addition, we have
employed learning-based detection of machine learning algorithms and compared the results
with existing studies to strengthen our claim about the existence of malicious behavior in the
case of clean applications.

4.1 Evaluations of Features
Android security architecture and applications have diverse representations when it comes to
requesting permissions and API Calls. Botnet generally demands more permissions than
malware applications or even seeks approval for permission sets on the Android platforms to
various system and user resources. On the other hand, users are frequently unaware of the
complexities and malicious effects of permissions in Android applications. Therefore, users
have additional information to help them make the best decision possible because users install
malicious applications unintentionally with a significant risk associated with them.
 According to the above explanation, we have used the percentage of permissions requested
by botnets, malware, and benign applications in our work. Fig. 4 clearly shows that the number
of requested permissions is larger in botnet applications as compared to malware applications.
Simultaneously, it did not imply that botnet programmers would be able to take advantage of
all capabilities. The reason for the larger number of permissions is that botnet programmers
are attempting to evade detection by invoking capabilities through the code of another program,
which reveals the increased number of permissions. To monitor malicious activities, botnet
developers require permission attributes to start and build a remote connection to devices. For
this reason, we observed those permissions that are utilized by botnet applications in our work.
These permissions are INTERNET, READ_LOGS, WRITE_EXTERNAL_STORAGE,
ACCESS_WIFI_STATE, and READ_SMS Etc.

As shown in Fig. 4. The INTERNET permission is used by botnet applications to maintain
the remote connection of the C&C server. Moreover, we have observed that the percentage of
Internet permissions is higher than the benign and malware applications. Another noteworthy
aspect we have noticed is that the malware and botnet applications have the same malicious
properties such as the HTTP-based C&C method. Here, 55.15% of botnet applications employ
ACCESS_FINE_LOCATION which is used by C&C server to get an accurate position from
GPS, WIFI, or cell towers. In contrast, malware applications employ 25%
ACCESS_FINE_LOCATION network connectivity to launch the attacks. In contrast,
according to our results, 61.42 % of botnet applications used ACCESS WIFI STATE for
getting information about WiFi. Only 10% of malware, on the other contrary, use this privilege.
Likewise, botnet programmers must be able to detect the current state of a cell phone That
allows them to be aware of the current condition of the mobile device, and if it is active, the
botmaster can commence communicating with the cell phone, According to our findings,
READ PHONE STATE is used by 100% of botnet applications and 98% of malware
applications for nefarious purposes. Only 40% of benign users, on the other hand, take
advantage of this permission. Similarly, 82.28% of botnets employ ACCESS NETWORK
STATE using ACCESS_NETWORK_STATE to establish the connection between phone state
and network state this permission works like a bridge.

714 Arhsad et al.: Android Botnet Detection Using Hybrid Analysis

Fig. 4. Frequency Analysis of Permissions

We also looked at the API calls to see if there were any malicious code execution capabilities.
The impact of dangerous API calls on malware, botnets, and benign applications is depicted
in Fig. 5. To establish and disseminate botnet networks, API Calls usually have access to
instructions like execute(), connect(), and openConnection(). Similarly, the botnet used the
API functions getConnectionInfo(), getNetworkInfor(),
getActiveNetworkInfo(),locationListener(), requestLocationUpdates(),
getLastKnownLocation(), getLine1Number(), andgetDeviceID() to connect and obtain
network information from the devices. On the other hand, for API requests files have the
smallest impact on botnets, malware, and benign applications. Furthermore, botnet
applications use the getLine1Number 42.13 % of the time, whereas malware applications use
it 45%. Another crucial aspect of botnet applications is the ability to obtain and send bot
identification information to remote hosts. This can be done through the following API calls:
getSimSerialNumber() and getDeviceID(). Botnet applications utilize getSimSerialNumber()
and getDeviceID() 31.42% and 42% respectively. Consequently, on average 17% of botnet
applications use getLastKnownLocation API Calls. In contrast, on average 5% of malware and
0% of benign applications use getLastKnownLocation API. Similarly, 18% of applications use
exec() for remote connection in comparison with 10% and 40% of malware and benign
applications respectively.

0
20
40
60
80

100
120

Permissions

Botnet malware benign

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 715

Fig. 5. Frequency Analysis of API Calls

4.2 Classifiers Evaluation (stage- 3)
In this phase, we demonstrate the effectiveness of the suggested explanation to validate our
claim that hybrid analysis is an effective and efficient technique for detecting mobile botnet
applications with API Calls and Permissions. Therefore, we have employed various machine
algorithms such as Naive Bayesian, Random Forest, SVM with SMO, decision tree, and
Multilayer Perceptron (MLP) as classification algorithms. To measure the results, we have
presented the experimental results and the performance of the models in terms of True Positive
Rate (TPR), False Positive Rate (FPR), Precision, Recall, and Accuracy (ACC).
Table 5 demonstrate the evaluation of machine learning classifiers on benign, malware, and
botnet dataset which consists of 100 instances. It observed that decision trees have the highest
accuracy of 99%, followed by random forest and Naive Bayesian with 96 % and 94 % accuracy,
respectively. Additionally, we indicated that decision trees outperformed other conventional
classifiers.

Table 5. Evaluation Results of Machine Learning Classifiers
Classifier TP Rate FP Rate Precision

(%)
Recall(%) F-

Measure(%)
Accuracy(%)

Random
Forest

0.960 0.071 0.961 0.960 0.960 96

Decision
Tree

0.990 0.003 0.990 0.990 0.990 99

SVM with
SMO

0.950 0.075 0.950 0.949 0.949 95

Naïve
Bayesian

0.940 0.055 0.942 0.940 0.940 94

MLP 0.950 0.053 0.950 0.949 0.950 95

0

10

20

30

40

50

API

botnet malware Benign

716 Arhsad et al.: Android Botnet Detection Using Hybrid Analysis

4.3 Comparison with other existing studies
In this section, we evaluate the hybrid analysis framework with previous research studies to
emphasize the importance of our work. As previously stated, there seems to be a lack of studies
on mobile botnet detection employing hybrid analysis and machine learning classifiers. To the
best of our knowledge, static and dynamic approaches are used in existing methodologies,
depending on the properties of API Calls and Permissions. For that reason, direct comparison
is not appropriate. However, we can compare the results in terms of accuracy, techniques, and
features.

Table 6. Comparison with other existing studies
Reference Technique Features Accuracy
[25] Static Permissions &

API_Calls
94.83%

[26] Static Permissions 92.10%
[27] Static Permissions 89.30%
[28] Static Permissions &

API_Calls
96%

Purposed framework Hybrid Analysis Permissions &
API_Calls

99%

 As shown in Table 6, the purposed framework is a more effective and efficient technique
rather than Rashidi & Fung (2016), who used the permissions feature to obtain 89.30%.
Another research study, by Sanz et al. (2013), used the permissions and API Calls features to
achieve 94.83 % accuracy. Yerima et al., (2014) attained an accuracy of 92.10 percent using
features extraction technology. The proposed framework is more accurate than Rashidi &
Fung, (2016), Perivian & Zhu (2013), Sanz et al., (2013), and Yerima et al., (2013). The better
outcomes of the suggested framework are due to the utilization of a large number of benign,
botnet, and malware applications, as well as the features selection approach.
 Fig. 6 demonstrated the accuracy displayed by a bar graph. It revealed that the proposed
framework has high accuracy when compared to other studies.

Fig. 6. Comparative Analysis

84.00%

86.00%

88.00%

90.00%

92.00%

94.00%

96.00%

98.00%

100.00%

Sanz et al.,
2013

Peirvian &
Zhu, 2013

Yerima et al.,
2014

Rashidi &
Fung, 2016

Proposed
Framework

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 717

5. Conclusion
Botnets have become a big threat to smartphones due to the rapid evolution of mobile phone
capabilities. Mobile phone is frequently connected to the Internet at all times to Android
applications and online services such as entertainment, social media sites, web applications,
and financial activities. Because of internet accessibility, botnet applications are growing more
popular among cybercriminals. For this reason, we purpose a hybrid analysis framework to
analyze and examine the Android botnet applications. The framework is divided into three
parts. Dataset collection dataset preparation, and classifier evaluation.
 In the first part, we prepare a dataset of benign, malware and botnet applications with a total
of 100 instances in our work. For dataset preparation, we use reverse engineering techniques
to extract features for the detection of Android botnet applications. Additionally, we designed
a hybrid technique that extracts various features using static and dynamic applications to detect
an Android botnet. During the feature extraction process, we have also discovered any
permissions and API calls that potentially lead to botnet activity. In addition, applications are
required to run in a secure Droid box, and the results are collected for further classification.
Finally, In the last phase, we compared the results by applying different machine learning
classifiers on Android Botnet applications with other existing studies. The results show that
the decision tree has the highest accuracy of 99% as compared to the random forest and
Naivebayesian with 96% and 94% accuracy, respectively.
 Conclusively, this paper can achieve the goal of providing the best mobile botnet detection
and accuracy by merging a feature set of permissions and API Calls. Other key techniques to
improve accuracy will be examined in the future, including intent, string, and system
component selections.

References
[1] Poonguzhali, P., et al., “Secure storage of data on android based devices,” International Journal

of Engineering and Technology, 8(3), pp. 177-182, 2016. Article (CrossRef Link)
[2] Arif, M.N., A.A. Bakar, and M.M. Saudi, “A new mobile malware classification for audio

exploitation,” International Journal of Engineering and Technology (UAE), 7(4.15), pp. 59–62,
2018. Article (CrossRef Link)

[3] Lindorfer, M., et al., “AndRadar: fast discovery of android applications in alternative markets,” in
Proc. of International Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, pp. 51-71, 2014. Article (CrossRef Link)

[4] Erturk, E, “A case study in open source software security and privacy: Android adware,” in Proc.
of World Congress on Internet Security (WorldCIS-2012), 2012. Article (CrossRef Link)

[5] Oberheide, J. and C. Miller, “Dissecting the android bouncer,” SummerCon2012, New York, 95,
pp. 110, 2012. Article (CrossRef Link)

[6] Percoco, N.J. and S. Schulte, “Adventures in bouncerland,” Black Hat USA, 95, pp. 110, 2012.
[7] Pieterse, H. and M. Olivier, “Design of a hybrid command and control mobile botnet,” Journal of

Information Warfare, 12(1), pp. 70-82, 2013. Article (CrossRef Link)
[8] Geng, G., et al., “The Design of SMS Based Heterogeneous Mobile Botnet,” J. Comput., 7(1), pp.

235-243, 2012. Article (CrossRef Link)
[9] Schmidt, A.-D., et al, “Static analysis of executables for collaborative malware detection on

android,” in Proc. of 2009 IEEE International Conference on Communications, 2009.
[10] Karim, A., R. Salleh, and M.K. Khan, “SMARTbot: A behavioral analysis framework augmented

with machine learning to identify mobile botnet applications,” PloS One, 11(3), pp. e0150077,
2016. Article (CrossRef Link)

http://doi.org/doi:%2010.7763/IJET.2016.V8.880
http://doi.org/doi:%2010.14419/ijet.v7i4.15.21372
https://doi.org/doi:10.1007/978-3-319-08509-8_4
https://ieeexplore.ieee.org/document/6280226
https://jon.oberheide.org/files/summercon12-bouncer.pdf
https://www.jstor.org/stable/26487000
http://doi.org/doi:10.4304/jcp.7.1.235-243
https://doi.org/10.1371/journal.pone.0150077

718 Arhsad et al.: Android Botnet Detection Using Hybrid Analysis

[11] Aswini, A. and PP. Vinod, “Droid permission miner: Mining prominent permissions for Android
malware analysis,” in Proc. of The Fifth International Conference on the Applications of Digital
Information and Web Technologies (ICADIWT 2014), 2014. Article (CrossRef Link)

[12] Choi, B., S.-K. Choi, and K. Cho, “Detection of mobile botnet using VPN,” in Proc. of 2013
Seventh International Conference on Innovative Mobile and Internet Services in Ubiquitous
Computing, 2013. Article (CrossRef Link)

[13] Karim, A., R. Salleh, and S.A.A. Shah, “DeDroid: a mobile botnet detection approach based on
static analysis,” in Proc. of 2015 IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing
and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl
Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-
ScalCom), 2015. Article (CrossRef Link)

[14] Liang, S. and X. Du, “Permission-combination-based scheme for android mobile malware
detection” in Proc. of 2014 IEEE international conference on communications (ICC), 2014.
Article (CrossRef Link)

[15] Pravin, M.N.P., “Vetdroid: Analysis using permission for vetting undesirable behaviours in
android applications,” Int. J. Innov. Emerg. Res. Eng, 2, pp. 131-136, 2015.

[16] Desnos, A., G. Gueguen, and S. Bachmann, “Androguard: Reverse engineering, malware and
goodware analysis of android applications, and more (ninja!),". [Online]. Available:
https://www.kitploit.com/2016/07/androguard-reverse-engineering-malware.html?m=0

[17] Su, M.-Y. and K.-T. Fung, “Detection of android malware by static analysis on permissions and
sensitive functions” in Proc. of 2016 Eighth International Conference on Ubiquitous and Future
Networks (ICUFN), 2016. Article (CrossRef Link)

[18] da Costa, V.G., et al, “Detecting mobile botnets through machine learning and system calls
analysis,” in Proc. of 2017 IEEE International Conference on Communications (ICC), 2017.
Article (CrossRef Link)

[19] Yang, M., et al., “Detection of malicious behavior in android apps through API calls and
permission uses analysis,” Concurrency and Computation: Practice and Experience, 29(19), pp.
e4172, 2017. Article (CrossRef Link)

[20] Karim, A., Chang, V., & Firdaus, A., "Android botnets: a proof-of-concept using hybrid analysis
approach," Journal of Organizational and End User Computin, vol. 32, no. 3, pp. 50-67, 2020.
Article(CrossRef Link)

[21] Karim, A., “Detection of Mobile Botnet Applications Using Structural and Behavioral Patterns,”
Fakulti Sains Komputer dan Teknologi Maklumat, Universiti Malaya, 2016.

[22] Desnos, A. and PP. Lantz, “Droidbox: An Android application sandbox for dynamic analysis,”
Lund Univ., Lund, Sweden, Tech. Rep, 2011.

[23] Arp, D., et al, “Drebin: Effective and explainable detection of android malware in your pocket,”
Ndss, 2014. Article (CrossRef Link)

[24] Karim, A., et al., “On the analysis and detection of mobile botnet applications,” J. Univers. Comput.
Sci., 22(4), pp. 567-588, 2016.

[25] Sanz, B., et al., “MAMA: manifest analysis for malware detection in android," Cybernetics and
Systems, 44(6-7), pp. 469-488, 2013. Article (CrossRef Link)

[26] Yerima, S.Y., S. Sezer, and I. Muttik, "High accuracy android malware detection using ensemble
learning," IET Information Security, 9(6), pp. 313-320, 2015. Article (CrossRef Link)

[27] Rashidi, B. and C. Fung, "BotTracer: Bot user detection using clustering method in RecDroid," in
Proc. of NOMS 2016-2016 IEEE/IFIP Network Operations and Management Symposium, 2016.
Article (CrossRef Link)

[28] Peiravian, N. and X. Zhu, “Machine learning for Android malware detection using permission and
API calls,” in Proc. of 2013 IEEE 25th international conference on Tools with artificial
intelligence, 2013. Article (CrossRef Link)

http://doi.org/doi:%2010.1109/ICADIWT.2014.6814679
http://doi.org/doi:%2010.1109/IMIS.2013.32
http://doi.org/doi:10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.240
http://doi.org/doi:%2010.1109/ICC.2014.6883666
https://doi.org/10.1109/ICUFN.2016.7537161
https://doi.org/doi:10.1109/ICC.2017.7997390
https://doi.org/10.1002/cpe.4172
http://dx.doi.org/%20DOI:%C2%A010.4018/978-1-7998-8545-0.ch005
https://prosec.mlsec.org/docs/2014-ndss.pdf
https://doi.org/10.1080/01969722.2013.803889
https://doi.org/10.1049/iet-ifs.2014.0099
http://doi.org/DOI:%C2%A010.1109/NOMS.2016.7502994
http://doi.org/DOI:%C2%A010.1109/ICTAI.2013.53

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 18, NO. 3, March 2024 719

Mamoona Arshad has received his MS Degree (Information Technology) from Bahauddin
Zakariya University Multan, Pakistan. Her area of research includes Botnet Detection,
Machine learning, Deep Learning and Computer Vision. She is currently Visiting Lecturer in
the Bahauddin Zakariya University Multan, Pakistan.

Ahmad Karim has received his Phd Degree (Computer Science) from University of
Malaya, Malaysia. His area of research includes Botnet Detection, Mobile Cloud Computing,
Computer Networks and Mobile Computing. He is currently Senior lecturer in the Bahauddin
Zakariya University Multan, Pakistan. He has also achieved Cisco International Certifications
(CCNA, CCNP, CCAI).

