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Abstract 
 

While the conventional vehicle’s Head-Units played relatively simple roles (e.g., control of 

heating ventilation and air conditioning, the radio reception), they have been evolving into 

vehicle-driver interface with the advent of the concept of Connected Car on top of a rapid 

development of ICT technology. The Head-Unit is now successfully extended as an IVI (In 

Vehicle Infotainment) that can operate various functions on multimedia, navigation, 

information with regards to vehicle’s parts (e.g. air pressure, oil gauge, etc.). In this paper, we 

propose a platform architecture for IVI devices required to achieve the goal as a connected car. 

Connected car platform (CoCaP) consists of vehicle selective gateway (VSG) for receiving 

and controlling data from major components of a vehicle, application framework including 

native and web APIs required to request VSG functionality from outside, and service 

framework for driver assistance. CoCaP is implemented using Tizen IVI and Android on 

hardware platforms manufactured for IVI such as Nexcom’s VTC1010 and Freescale’s 

i.MX6q/dl, respectively. For more practical verification, CoCaP platform was applied to an 

real-world finished vehicle. And it was confirmed the vehicle’s main components could be 

controlled using various devices. In addition, by deriving several services for driver assistance 

and developing them based on CoCaP, this platform is expected to be available in various 

ways in connected car and ITS environments. 
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1. Introduction 

Vehicles have rapidly evolved; in the past, they were usually seen as mechanical systems. 

However, they are now becoming electronic systems on the basis of emerging ICT researches 

including Internet, Communications, Big data and Convergence technologies. Referred as IT 

based Automobile technologies, it is broadly divided into two major domains: the one is an 

autonomous driving as advances in a basic role of the vehicles [1], and the other is a Connected 

Car as advances in user experience (UX) in the vehicles [2, 3]. The latter have been paid much 

attention as the life style requires not only more frequent use of vehicles but also more time to 

spend in the vehicles. 

The concept of Connected Car is a convergence of state-of-the-art ICT technologies in 

order to improve both the level of comfort and the quality of driving experience inside the 

vehicles. To this end, it includes multimedia services including Audio/Video, navigation, the 

vehicle control based on the voice recognition, Diagnosis Efficiency and payment service, etc. 

The following shows the basic functionalities of Connected Car fundamentally required [4].   

 

⚫ capable of accessing the Internet at anytime, using either a built-in device or brought 

in user devices 

⚫ equipped with a set of modern applications and dynamic contextual functionalities, 

offering advanced infotainment features to the driver and passengers 

⚫ capable of interacting with other smart devices on the road or in mechanical shops, 

leveraging vehicle-to-road infrastructure communication technologies 

⚫ capable of interacting with other vehicles, leveraging vehicle-to-vehicle 

communication technologies 

 

Connected Car is embodied in the form of In-Vehicle-Infotainment (IVI) which acts as a 

control interface between diverse functions of vehicle and the driver. Software (SW) venders 

such as QNX Car 2, MS Windows Embedded Automotive 7, Wind River IVI, and Samsung 

Tizen IVI have led the SW platforms as a means to implement IVI devices, and GENIVI 

Alliance has led the standardization of such SWs. In addition to this, the display link in 

automotive IVI devices has appeared to favor the smartphones’ UX/UI similar to DLNA, WiDi, 

Miracast, AirPlay, and Chromecast [5] with the development of network and mobile 

technologies. The Connected Car Consortium (CCC) adopted MirrorLink as the global 

standard for this being integrated onto Connected Car as a mandatory. Google and Apple, two 

leading IT giants use Android Auto and CarPlay to wirelessly transfer smartphone’s UIs to 

IVI devices, respectively.  

In line with such progress, we here propose CoCaP, a software platform architecture 

particularly designed to implement these essential functionalities of Connected Car. First, we 

implemented them on Tizen IVI and Android in order to examine its efficacy, and deployed it 

in the real vehicles afterwards. As a platform, CoCaP provides broadly three categories of 

open-frameworks in the pursuit of (i) Smart Driving, (ii) Smart Care and Self Diagnostics of 

vehicles, and (iii) Mood and Entertainment services.  

For the smart driving, VSG is developed for the vehicle control based on CoCaP. Coupled 

with this, a vehicle control framework is developed both to monitor vehicles’ status and to 

control the vehicle towards the desirable states by connecting VSG and IVI devices. IVI’s 

vehicle control APIs are available for both Native Application and Web Application on top of 

Tizen IVI-based Native App type and Android-based Web App type. These VSG APIs can be 

accessed from external environments including mobile devices by linking to clouds. Like 
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Google's Android Auto and Apple's CarPlay, CoCaP, provides a display link framework using 

MirrorLink that allows the driver's smartphone applications to use the IVI device.  

In addition, CoCaP includes service frameworks for Smart Care/Self diagnostics, Mood & 

Entertainment services, and Runtime libraries and APIs needed for amalgamating fundamental 

functionalities such as (i) an emotional reasoning framework for preventing drivers from 

drowsiness so as to provide pleasant driving condition, (ii) a camera-based face/head tracking 

framework, (iii) a cloud framework to extend the functions of IVI devices to various mobile 

devices, and (iv) a display link framework for screen linking of mobile and IVI devices, etc. 

These are implemented on a basis of both a native library for supporting native applications 

and javascript-based library for supporting web applications. This allows to minimize the 

dependency on the platform and maximize the convenience of developers at the same time.  

Given the frameworks in CoCaP, we present three representative examples of Connected Car 

services. Smart Care service based on the physiological signal sensing device and the 

emotional reasoning framework is firstly presented. Next, the drowsy driving prevention 

service based on the camera and the image processing is described. Afterwards, MirrorLink-

based vehicle control framework and service are presented.  

     This paper is organized as follows. After the introduction in Section 1, brief summary of 

related works is presented in Section 2. It is followed by the details on CoCaP platform 

following the order of smart driving, smart care and self diagnostics, mood and entertainment 

services, and examples utilizing the platform features in section 3, 4 and 5, respectively. 

Finally, we conclude the paper with discussions and future works in section 6.  

2. Backgrounds 

2.1 Connected Car 

The car is no longer a mechanical means for the general transportation, but has evolved into 

an electronic product controlled by an Electronic Control Unit (ECU). Original electronic 

equipment for vehicles consisted of a small number of ECUs, each of which is totally 

uncoupled from the others and is dedicated to individual functions. Due to the rapid progress 

on ICT technologies, exchange of data between interconnected ECUs have become possible 

so that enables the development of highly sophisticated communication architectures between 

them [6].  

     Within this context, the number of embedded systems in automotive domain is steadily 

growing for body electronics, infotainment, and telematics applications [7, 8]. A modern 

vehicle is equipped with more than 200 sensors. They are used to measure several readings 

including distance, position, acceleration, vibration, angular velocity, pressure, flow, light and 

temperature. For example, a high-end Lexus manufactured by Toyota contains 67 

microprocessors, and even the world's cheapest car, Tata Nano, has a dozen of them as well. 

Voice-driven satellite navigation is typically used by millions of people in worldwide. Radar-

equipped cruise control allows vehicles to adjust their speed automatically in traffic. Some 

vehicles can even perform the car park by themselves.  

     Connected Car is representative form of this transformation. For example, it links to 

satellites navigation and communications networks, and even further directly to other vehicles. 

Thanks to this, it could transform driving, preventing motorists from getting lost, stuck in 

traffic or involved in accidents. And connectivity can improve entertainment and productivity 

for both driver and passengers [9, 10]. Connected car in effect means that vehicles are now 

part of the connected world, continuously connected on the internet, generating and 
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transmitting data, which on the one hand can be helpfully integrated into applications, like 

real-time traffic alerts broadcast to smartwatches, but also raises security and privacy concerns 

[11, 12]. 

 

Fig. 1.  Some examples of ECUs installed on today’s cars 

     As cars turn into computers on wheels, it becomes vital to do experiment with novel 

application scenarios and to envision suitable abstractions for integrating cars into existing 

enterprise information systems. This insightful project report tells the story of a prototyping 

platform for connected car software and shares the project’s experience with a cloud 

computing pattern language that helped drive the architectural platform design [13]. 

2.2 In-Vehicle-Infotainment Device 

The vehicle has sensors and actuators for each function of each part, and ECU made up of 

Micro Controller Units (MCU) is composed for the data processing of sensors and the control 

of actuators. ECUs usually consist of Powertrain, Braking, Chassis, and Steering module and 

so on constituting the vehicle. ECUs are also composed of various networks such as CAN, 

LIN, MOST and FlexRay for the data exchange among them. In this context, the main control 

system can be seen as a huge network between ECUs.  

     OSEK [14, 15] and AUTOSAR [16, 17] have been introduced to control these ECU-based 

control systems in a standardized manner. AUTOSAR is an automotive software specification 

and an execution environment designed for automobile companies to share, perform 

abstracting MCU and ECU, and provide RTE (Application Runtime Environment) based on 

Communication, Network, I/O, OS Service frameworks. AUTOSAR is built by SW 

Component (SW-C), Run-Time Environment (RTE) and Basic Software (BSW). It allows 

application services independent from HW to develop through adopting the concept of RTE 

and separating application-level SW-C from BSW, HW-related SW. SW-C implements parts 

of the functions of application SW and exchanges mutual data via port and interface as the 

basic unit mapped to ECU.  

     It is necessary to receive the support of ECU Datasheet from the manufacturers in order to 

collect data from each sensor constituting the vehicle and to perform the control via the ECU. 

This development method requires the cooperation with the automobile manufacturers, and 

there is a limitation to applying directly SW to ECU of the real vehicle. To use these functions 

of Connected Car so far, it is necessary to purchase a finished car already equipped with these 

functions or to replace it with an IVI device supporting Android Auto and CarPlay. 

MS's Embedded Windows Automotive (EWA) 7, one of the leading platforms for IVI devices. 

For MS EWA, parts subordinated to a CPU architecture are composed of third-party 

component of Hardware Layer, and parts needed manufacturer-level support are represented 
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as Tier 1 component.  

     Connected Car can be defined as a new form of vehicles that combines ICT technology 

with automobiles. The most pivotal device serving as an interface between the car and the 

driver in Connected Car is the IVI device. In the past, vehicles provided the HAVC control 

and the radio reception functions by placing Head-Units at the centerfascia and operated them 

by placing physical control units such as buttons. The Head-Units have gradually evolved into 

providing multimedia based functions, which become a high-end computer system supporting 

various networks such as Bluetooth, WiFi and LTE by now. Therefore, they have provide 

wider services, and many SW platforms for IVI have appeared to provide the vehicle control 

and the driver’s convenience functions in the form of applications. Typically, there are QNX 

Car 2, MS Windows Embedded Automotive 7, Wind River IVI, and Samsung Tizen IVI, etc. 

These OSs are customized by each model of automobile manufactures and are applied to 

finished vehicles. 

2.3 Display Link 

With the spread of mobile devices starting with smartphones and tablets, various technologies 

have appeared to project contents of them into other devices by copying the screens of mobile 

devices. DLNA, WiDi, Miracast, Chomrecast and AirPlay are good examples. They transfer 

contents on displays of laptop PCs, tablets, and smartphones to the displays of TV or other 

PCs. 

     The representative display-link technologies for Connected Car are MirrorLink, Google's 

Android Auto, and Apple's CarPlay. As IVI devices begin to support the wireless connectivity 

(e.g., WiFi, BT) and the ports like USB for the connection to peripherals, Google and Apple 

have launched Android Auto and CarPlay, respectively. They allow the smartphones’ UX to 

use in cars equally, and recently released vehicles have supported either or both products.  

     The Car Connectivity Consortium, made up of various automobile and electronic 

manufacturers, has joined together to establish an industry standard for certifying applications, 

services and devices which are both safe and useful for drivers, called MirrorLink. The joint 

effort by car manufacturers and mobile phone makers is aimed at developing public standards 

to define operations of smartphones linked to cars. MirrorLink is an interoperability standard 

on mobile devices that offers integration between a smartphone and car's infotainment system. 

MirrorLink amalgamates  smartphones with automotive application platforms where apps are 

hosted and run on the smartphone while drivers and passengers interact with them through the 

steering wheel controls, dashboard buttons and touch screens of their car's In-Vehicle 

Infotainment (IVI) system [18]. MirrorLink utilizes a set of well-established, non-proprietary 

technologies such as IP, USB, Wi-Fi, Bluetooth, Real-Time Protocol (RTP, for audio) 

and Universal Plug and Play (UPnP).  In addition, MirrorLink uses Virtual Network 

Computing (VNC) as the baseline protocol to display the user interface of the smartphone 

applications on the infotainment system screens and to communicate user input back to the 

mobile device. CoCaP enables mobile apps to use as they are in IVI via MirrorLink instead of 

directly supporting Android Auto or CarPlay. In addition, a vehicle control framework based 

on MirrorLink-VSG is designed in order to control the vehicle via the MirrorLink-based 

applications. 

2.4 ICT Convergence Services for a Car 

Intelligent vehicles, and all their services pertaining to security, efficiency, economic and 

environmental impact, and transportation comfort, are part of what is called an Intelligent 

Transport System (ITS) [19]. An ITS comprehends not only the vehicles but also pieces of the 

https://en.wikipedia.org/w/index.php?title=Car_Connectivity_Consortium&action=edit&redlink=1
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/MirrorLink#cite_note-ut-disconnect-1
https://en.wikipedia.org/wiki/Internet_Protocol
https://en.wikipedia.org/wiki/USB
https://en.wikipedia.org/wiki/Wi-Fi
https://en.wikipedia.org/wiki/Bluetooth
https://en.wikipedia.org/wiki/Real-time_Transport_Protocol
https://en.wikipedia.org/wiki/Universal_Plug_and_Play
https://en.wikipedia.org/wiki/Virtual_Network_Computing
https://en.wikipedia.org/wiki/Virtual_Network_Computing
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road infrastructure (like traffic signs and toll collection machines), pedestrians, and so on. A 

set of different communication means can be used to make these elements interact with each 

other. Fig. 2 gives a glimpse of the very diverse set of elements with which interact [4]. 

 

Fig. 2.  Overview of the connected car system 

     The types of ICT convergence services in the domain of Connected Car are various. Among 

them, the service for the driver's safety is considered with the most care. In this paper, several 

sensors and their associated functions are constituted for the various services with regards to 

the driver's safety including accident prevention, driver's fatigue sensing, real-time assistance 

for parking and accident, and anger management and stress reduction [20, 21].  

     The British Royal Society for the Prevention of Accidents estimates that driver fatigue may 

be a contributing factor in up to 20% of road accidents and up to a quarter of fatal and serious 

accidents [22]. To inspect the driver's fatigue and to alarm the time of the rest in due course, 

Electrocardiography (ECG) sensors are inserted under the seat. In line with this, products are 

launched to diagnose the driver's condition and provide services by measuring the driver's 

heart rates [23].  

     Emotion recognition has been researched in many fields, such as robotic systems and 

advanced driver assistance systems (ADASs) [24].  MIT’s Media Lab goes even farther in this, 

with “empathic vehicles” project called AutoEmotive. Here, sensors attempt to detect a range 

of driver’s emotions, and predictively manage the onset of his/her anger and stress [25]. This 

research implies that emotion-sensing might be helpful in reducing road rage incidents [26]. 

Methods to measure the emotion are visible-light cameras, thermal cameras, voice data or 

physiological signals, such as from electrocardiography (ECG), electroencephalograms (EEGs) 

or skin temperature (SKT) data [27]. Proposed emotional reasoning engine based on mobile 

user situation is on the basis of a context-aware and multimodal emotional reasoning model 

taking into account both the internal physiological variables (SKT, GSR, PPG, Movement) 

and the external environment variables (Temperature, Humidity, illumination) [28, 29]. 

     Another major cause of traffic accident is driving in drowsiness and the distracted driving 

[30]. The driver's physiological signals such as PPG, GSR and SKT are good indicators to 

evaluate the driver’s emotions. In addition, a camera-based framework to judge the drowsy 

driving can also contribute to this, which has been studied in various ways such as face 

recognition, eye tracking, head position tracking and blinking. Denso's Driver Status Monitor 

has a function to extract 17 features of the face by taking a picture of the driver with the camera 

installed at the center of the steering wheel. The driver is warned when drowsiness or looking 
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elsewhere while driving occurs by sensing the direction of the face or the open state of the 

eyes. The signs of drowsiness such as the degree of heavily lidded-eyes, the number of blinking, 

the irregular movements of the eyes can be figured out in various ways. The levels of 

drowsiness are divided into six levels, and the warning levels change according to the levels 

of drowsiness. If the level of drowsiness is determined as strong, the collision avoidance device 

operates faster and strongly. In the case of a light drowsy stage, the air conditioner turns on 

strongly [31].  

     The device of AISIN SEIKI detects the driver’s breath, pulse and so on by installing a 

camera module on the steering wheel and by building a pressure sensor and a vibration device 

into the seat. It is impossible to distinguish whether the driver is sleeping or fainting with only 

the camera. Thus, the comprehensive judgment with a camera and a pressure sensor makes the 

distinction between drowsiness and fainting possible. If a fainting condition is detected, an 

emergency notification can be automatically sent to the fire department. In the case of light 

drowsiness, the voice guidance only operates. However, when an emergency such as deep 

drowsy driving or fainting is detected, the driver is awaken by the voice guidance or the 

vibrating seat before an accident [32].  

     Trywin's dormancy prevention device, Dramoni is sold at 44,000 yen and solves many 

problems of the existing camera systems and various sensors such as complicated installation, 

high price and limited driver’s behaviors. Dramoni categorizes the drowsy driving into seven 

levels by detecting the driving motion from the motion of the driver’s back and backbone. 

When driving, the driver always performs basic operations such as adjusting the steering wheel, 

stepping on the accelerator and checking the mirror. Dramoni pays attention to the fact that 

the basic operations are not properly performed when concentration is reduced [33]. In 

Germany, Bosch has commercialized a device that calculates the driver's fatigue via the 

manipulation of the steering wheel. Based on that the sudden manipulation of the steering 

wheel tends to increase on the lack of concentration, the icon shaped like a coffee cup is 

blinking when it exceeds a certain level, informing that rest is necessary. This product was 

adopted for Volkswagen’s luxury sedan, Passat in 2010 [34]. 

3. CoCaP Architecture 

3.1 Vehicle Selective Gateway 

As For the data collection of the vehicle, IVI applications must be developed based on SDK 

provided by SW platforms such as QNX Car, Windows Embedded Automotive, Tizen IVI, 

Android, Automotive Grade Linux and GENIVI to control the vehicle through IVI devices. In 

addition, applications and devices may be required to comply the standard data 

collection/transfer interface like the OBD2. In this case, dependent applications must be 

developed depending on the IVI platforms, vehicle manufacturers and models, otherwise 

compatibility cannot be guaranteed. In CoCaP architecture, VSG is developed to ensure the 

independence of the IVI platform for the vehicle data collection and the vehicle control, and 

VSG APIs are designed to abstract the functions of the vehicle data collection and the vehicle 

control. Therefore, VSG APIs allows you to call and to control the functions independent of 

the vehicle. The IVI devices can be used independently on the OS by providing VSG APIs as 

a web application library based on the Web Framework. 

     While the automobile manufactures can develop the AUTOSAR-based application SW 

mapped to the ECU and apply it directly to the vehicle, it is almost impossible for the third-

parties to develop this type of vehicle SW. Therefore, VSG is developed for the indirect control 
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of the IVI-based ECU and the collection of the vehicle data. Then the control via IVI can be 

possible by connecting VSG and IVI. Fig. 3 shows the interface among the vehicle's ECU 

network, the VSG, and the IVI device.  

 
Fig. 3.  ECU, VSG, and IVI Inter-connection 

     Body Control Module (BCM) built on the vehicle, through which almost functions and 

operating structures such as switches connected to the vehicle's electric field can be understood. 

Basically, the BCM is used to directly control all functions related to the body of the vehicle 

(door open/close, window open/close, sunroof, HAVC On/Off, head-beam On/Off, smart key, 

etc.). VSG's APIs basically include functions related to BCM. ISO 13185 standard led by ICT 

industry provides standard interfaces and APIs for securely collecting vehicle information and 

provides VSG's design guidelines as shown in Fig. 4. 

 

Fig. 4.  V-ITS-SG and Vehicle Component Interface 

     Since there is no case that the ICT industry-led standardization is attempted in the domestic 

automobile industry, there is a limitation that the practical impact of the service is relatively 

low and the vehicle-oriented services such as safety service and remote control cannot be 

provided. Inside the vehicle, 37.5KBYTE (@ 300Kbps) of information is generated. In case 

of simply collecting this information, 162TB (100,000 vehicles / 12 hours) of huge data will 

be produced. If it is used in the connected car service, processing using data filtering is required. 

Therefore, as for the standard API, the basic interface is defined based on ISO 13185 standard, 

and APIs that should be considered from the viewpoint of the car industry are additionally 

developed such as clustering function for combining vehicle information properly and 

screening function for blocking external intrusion. Fig. 5 shows the VSG's block diagram for 

the interface between the vehicle and the VSG, and the connection among the VSG, the IVI 

device, and the service. 
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Fig. 5.  Vehicle Selective Gateway Block Diagram 

     In order to implement the function of VSG for the vehicle control, it is necessary to 

understand the structure of ECU which can be accessed and controlled for each model of the 

car manufacturers. In the tests, the information on Hyundai Motors' Sonata and SsangYong 

Motors' Tivoli models are offered from the manufacturers thus applied our proposal to the 

commercial manufactured vehicles.  

     VECTOR's CANoE, which is widely used in the industry for the vehicle network design, 

is used as the evaluation device. The dynamic information of the vehicle that should be 

collected in real time in the clustered message is classified separately and 8 information (tire 

status, gear status, airbag status, amount of fuel, engine RPM, longitudinal acceleration, 

velocity, vehicle ID) is included. Time required to process 8 clustered vehicle information in 

the VSG. The average processing time of collected data is 100.003 ms. 

VSG verifies the vehicle controllability by getting E/E information about some models of 

Hyundai and Ssangyong included in our consortium and by applying it to commercial vehicles. 

Based on this, APIs provided in the level of VSG are defined. Table 1 lists the vehicle control 

APIs provided by CoCaP. 
Table 1. VSG APIs 

API Function Description 

setStartVehicle() Vehicle Startup On  

setStopVehicle() Vehicle Startup Off 

setHighbeam() Headbeam On/Off 

setHorn() Horn On/Off 

setSunroof() Sunroof Open/Close 

setOpenWindow() Window Open/Close 

setDriverDoorOpen( ) Driver’s door open/close 

setAssistDoorOpen( ) Assist’s door open/close 

settEmergencyLight() Emergency light on/off 

setIncarTemperature() Vehicle temperature setting 

setVSGmsgStart() VSG message transmit start 

setVSGmsgStop() VSG message transmit stop 
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getStartVehicleStatus( 
) 

Start Status of vehicle 

getDriverDoorOpen( ) Driverdoor open/close 

getAssistDoorOpen( ) Assistdoor open/close 
getFuelLevel() Fuel level 

getEngineRPM( ) Engine RPM 
getTotalDistance( ) Total distance  
getDriveSpeed( ) Drive Speed  
getAccCount( ) The number of rapid acceleration  
getRedCount( ) The number of rapid deceleration 

getPBreak( ) Parking Gear Status 
getAirbagStatus( ) Airbag deployment Status 

getIncarTemp() Vehicle temperature 
getCheckEngine( ) Engine abnormal status  

getVehicleID( ) Vehicle ID 
getSideBrakeStatus( ) Parking Brake status 

 

     In order to develop the VSG that serves as the interface with the IVI device and the vehicle 

through the CAN network, NXP's MPC5566 of 32-bit MCU and FreeScale's MC9S08DZ60 

of 8-bit microcontrollers are used. 

     The VSG (Vehicle Selective Gateway), which contains the vehicle information, should 

communicate with the IVI device based on a common format, and therefore the UGP (Unified 

Gateway Protocol) message format defined in ISO 13185-2 is applied. As for the UGP 

message format, data structures such as ‘dataParamList’ and ‘dataParamMapping’ are 

defined as data parameters to respond to the request. According to ISO 13185-2 standard, these 

data parameters should be defined in the VSG depending on the manufacturers.  

     Two types of IVI platforms are adopted to apply CoCaP in IVI devices. In the first stage, 

Tizen IVI is ported onto Nexcom's VTC 1010 model to build the system. In the second stage, 

Android 4.4 (KitKat) is ported to on Freescale's i.MX6DL to implement the system. Tizen IVI 

in the first stage provides native framework and web framework to support both native app 

and web app, respectively. However, since Android in the second stage does not support 

framework for web app development, web framework is implemented by applying Crosswalk. 

Web framework in CoCaP enables VSG-based vehicle control SW to be implemented in both 

native app and web app. The methods of VSG API implementation depend on the types of SW 

platforms of IVI. 

     First, Tizen IVI-based CoCaP connects VSG and IVI to UART. It implements Native 

library in IVI for UART communication and transmits commands to ECU. Web app interface 

wraps it with javascript functions in order to be equally used in web-app. In the Android-based 

CoCaP, VSG library for native app development is implemented as the format of service 

component included in application framework layer of Android architecture. Therefore, 

Android native application can be developed as an application including the vehicle control 

by including VSL APIs-related class library in the project. In addition, web app can easily call 

them by using Crosswalk's javascript interface in order to provide the web app interface. How 

to build a platform-specific library and how to develop such a library-based application are 

described in the next section. 

3.2 CoCaP Architecture 

CoCaP is the platform SW for connected car integrating (i) the IVI core for monitoring and 

controlling the vehicle condition, (ii) the native core and web framework for developing and 

running applications for IVI devices, and (iii) the network framework and device framework 

for supporting various convergence services. And it supports clouds to ensure interoperability. 
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Fig. 6.  CoCaP: Overall Architecture and Service Models 

     Fig. 6 shows the SW Architecture of the CoCaP platform. In the lowest layer, ECUs 

managing sensors and actuators associated with various functions inside the vehicle are 

connected to the VSG and the CAN, which serve as a gateway between the vehicle and the 

IVI device. The VSG is connected to the IVI again to serve as an interface between the vehicle 

and the driver.  

     IVI core, Web core, and Native core components in the middle layer are essential 

components for developing applications for IVI devices. IVI core includes the vehicle control 

framework including VSG APIs. Native core includes a framework supported by SW platform 

for IVI, and SDK. Web core includes a web browser engine.  

Network Framework and Device Framework on top of component layer are included for the 

connectivity between devices. Convergence Devices SDK is provided to enable web 

application and native application for IVI devices to be developed. It provides the driver with 

the vehicle status information through IVI devices or mobile devices such as smart phones, 

tablets, and smart watches, and responds to the driver's requests, and interoperates with other 

external services by linking to clouds. 

     The CoCaP platform provides web runtime to support web application as well as Tizen IVI 

and Android native application. Web runtime in CoCaP includes web app core framework and 

web app extension core framework to provide various services based on web application. It 

also provides native interface for the connectivity to IVI devices and mobile devices, and VSG-

based native interface for the vehicle control, and provides cloud interface for the connectivity 

to cloud and web services. 

    Web runtime is a collection of applications for IVI devices, VSG related to the vehicle 

information, external devices such as cameras and bio-signal sensors, and components for 

various web services. The web app framework consists of a WebApp core consisting of a 

library provided by the Web RunTime Engine (WRT) and a WebApp extension core, which 

is a library for processing the necessary extensions (e.g., bio-signals, cameras, application of 

user profiles, etc.). The Web app framework provides the access to the resource for mobile 

devices such as VSGs, IVIs, and smartphones through the native interface, enabling the 

execution of service applications on IVI devices or mobile devices via the cloud interface. At 



648                                                                    Kook: The Design, Implementation, Demonstration of the Architecture,  
Service Framework, and Applications for a Connected Car 

 

this time, each component of WRT provides APIs by binding data accessed from WRT through 

Native interface and cloud interface into javascript in order to be used in web application. For 

the application and the experiment of CoCaP, IVI devices supporting Tizen IVI and Android 

are sorted out. Since both Tizen IVI and Android are open sources based on Linux kernel, they 

are considered to easily add or change the necessary functions. The possibility of supporting 

web framework or porting web framework is additionally considered.  

3.2.1 Tizen IVI-based CoCaP Platform 

Nexcom's VTC 1010, which supports Tizen IVI [35] is used as an IVI device to connect with 

VSG for the implementation of CoCaP. Nexcom's VTC 1010 supports Tizen IVI 2.0, one of 

the IVI SW platforms, and Tizen IVI includes both a native framework for Native Application 

and a web framework for Web Application. 

     UART channels between IVI and VSG are composed to test the vehicle control based on 

VSG APIs through IVI application. The UART library in Tizen IVI is implemented for UART-

based communication between IVI device and VSG, through which VSG' APIs can be called 

in the application of IVI device. The UI and service of IVI device application are implemented 

as Web Application based on Crosswalk. The UART library to call VSG's vehicle control API 

defines the byte array corresponding to VSG's command packet format as Table 2. 

 
Table 2. ECU Command Packets 

ECU Command 
Packet Format & Value 

Type Content Position Val[0] Val[1] Val[2] Val[3] Val[4] 

get_driver_seatbelt_status 0xAA 0x41 0x10 0x01 0x00 0x00 0x00 0x55 

get_start_vehicle_status 0xAA 0x41 0x13 0xFF 0x00 0x00 0x00 0x55 

set_start_vehicle 0xAA 0x51 0x13 0xFF 0xFF 0x00 0x00 0x55 

set_stop_vehicle 0xAA 0x51 0x13 0xFF 0x00 0x00 0x00 0x55 

get_driver_temperature_c 0xAA 0x41 0x21 0x01 0x00 0x00 0x00 0x55 

set_driver_temperature_c 0xAA 0x51 0x21 0x01 0x80 0x80 0x00 0x55 

get_passenger_temperature_c 0xAA 0x41 0x21 0x10 0x00 0x00 0x00 0x55 

 

    Table 2 enumerates data packet per ECU command defined by the analysis of the BCM and 

E / E component structure of the vehicle model, Hyundai Motor's SONATA, that we used for 

the experiment. In the Tizen IVI-based native application, VSG APIs can be called using the 

UART library for the ECU command in Table 2. In order to support the web application, they 

can be used in IVI web application by wrapping the ECU command with the API functions in 

Table 1 and by building into UART library. Table 3 shows how to use VSG APIs in the 

Node.js application via the Web-based UART library. 

 
Table 3. VSG APIs & Node.js Example 

Function Usage for Node.js 
Load Serial Package var vsg = require(‘./build/Release/serial’); 

getDriverSeatBeltStatus vsg.getDriverSeatBeltStatus(); 
getStartVehicleStatus vsg.getStartVehicleStatus(); 

setStartVehicle vsg.setStartVehicle(); 

     

We note that the reason to use Node.js in the VSG control application is to make the 

API call of the VSG easier in the mobile device and the cloud environment. In addition, to add 

a server component to IVI application of VSG APIs by using WebSocket or Socket.IO makes 

it possible to remotely control the vehicle in other mobile devices such as smartphones as well 

as IVI. 
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3.2.2 Android-based CoCaP Platform 

Freescale's i.MX6 platform [36] is specialized for IVI devices, equipped with all the essential 

elements to develop IVI application SW. It supports FlexCAN as an interface for the 

connection with the vehicle. It also provides UART and USB interface for connecting to 

peripherals, and provides basic network interfaces such as WiFi, Bluetooth, and Ethernet. 

     As seen, Android 4.4 is ported to the i.MX6-based IVI device, and the development of APIs 

that can be used in Android-based Native Application or Web-App is required for the vehicle 

control by communicating with the VSG. The VSG here is customized for developing Android 

Native Application in the form of Service of Android Framework layer. To do so using these 

VSG APIs, it is implemented as a class library of jar format by binding related classes. The 

binding method of Android Service providing VSG APIs is as follows. We note that VSG's 

Service Component is named as ‘flexcan’, and Android-based native application can call 

VSG's APIs through the interface of flexcan service component in this paper. 

     The configuration of the VSG APIs is seen in Table 1, and the calling method is specified 

by each function provided by the interface of the FlexcanService component. 

     The CoCaP provides Web Runtime to support web app. We use Crosswalk to develop VSG 

interface on web runtime, which makes the call of VSG APIs possible through javascript.  

4. Convergence Services for Connected Cars 

4.1 Emotion Sensing 

When driving a vehicle, it is common that an accident occurs due to the drowsy condition 

caused by several factors such as long time driving, accumulated fatigue, or environmental 

situations [37]. The driver's drowsiness is recognized by tracking of driver’s face, eyes and 

head via the images processing techniques from the images captured by camera sensors and 

by extracting them. Or it could alternatively done by the evaluation of driver’s condition using 

their physiological signals. In CoCaP platform, a device for the evaluation of emotional state 

in conjunction with an emotional reasoning framework are applied to this end through face 

tracking and head tracking based on camera and image processing.  

     Fig. 7 shows the sensing device for collecting driver's physiological signals using PPG, 

GSR and STK. We installed these sensors on the steering wheel and armrests as a means to 

collect the data of fingers, wrists and forearms. These physiological data fuel the emotion 

reasoning framework shown in Fig. 8 that performs the inference on the emotional states of 

the driver in due course. External factors such as temperature, humidity and illumination can 

also affect to the emotional states of the driver. The Temperature Humidity Index (THI) is 

therefore considered to evaluate the human’s emotional state more accurately coupled with 

physiological data.  

 
Fig. 7.  Emotion Sensing Device 
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Fig. 8.  Emotion Recognition & Reasoning Framework 

    The results of the emotional reasoning can be expressed in a degree of driver's arousal status, 

relaxation, neutrality, comfort, or discomfort. A service to induce a state of awakening from a 

relaxed state or that to induce a state of comfort or neutrality from an uncomfortable state are 

provided depending on the reasoning results. These could be used to prevent drivers from the 

drowsy driving, one of the most typical causes of traffic accidents. Moreover, they can be used 

to figure out an emergency situation such as the driver's anger control or cardiac arrest.   

Based on the physiological signals collected through the Emotion Sensing device, the 

emotional state of the driver can be inferred as one out of three states: Normal, Stress and 

Sleepy. The IVI can run the application to relieve the driver's Stress or feeling of Sleepy 

depending on the inference outcomes.  

     In Fig. 8, the FPGA is used to improve the computation speed for emotional evaluation 

with such two types of data. Since the state of human's emotion changes in a very short cycle, 

however, this does not take place in real-time. 

 

Fig. 9.  Emotion Sensing Device and IVI Inter-connection 

   The emotional reasoning results in the control of the application of IVI to lead the driver’s 

status to being pleasant or awaken by transmitting a stimulus (in the form of tapping) to the 

seat via the VSG. Sometimes, it alerts the driver through the wearable device as shown in Fig. 

9. In the emergency situation where the driver is unconscious, a loud emergency call is sent 

via the driver's smartphone.  
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4.2 Emotional Service 

The CoCaP is also equipped with a vision based system composed of a camera device and 

image processing unit based on OpenCV in order to monitor driver’s status. It is particularly 

designed for the appropriate response to accidental situations caused by drowsy condition. Fig. 

10 shows the Driver Vision Sensing Framework (DVSF) of the CoCaP platform to determine 

the situations so that responds to those appropriately, such as the driver's drowsiness or fainting. 

DVSF acquires images by connecting a USB-type webcam to the IVI device, and recognizes 

and traces the driver's face through the OpenCV-based Haarcascade algorithm in order to 

infer the driver’s status. 

     OpenCV is ported to i.MX6 applying to Android, and Driver Vision Sensing Native (DVSN) 

API is developed to predict normal/abnormal driving posture such as drowsy driving and 

distracted driving based on face tracking. In this process, the modification of the driver and 

the framework is required for IVI device to recognize a USB-type webcam.  

DVSN API is used to detect and track the face region from the driver’s image captured by the 

USB camera. We assume that a threshold region for Awake status is pre-defined. When 

departure event (e.g., up, down, left, right) from the threshold region is detected, the result 

code (NORMAL = 0, ABNORMAL = 1) is sent to the server in the format of WebSocket 

message; both result and image used for the prediction are sent to the WebRTC server outside 

the IVI device. 

 

Fig. 10.  Emotion Sensing Device 

4.3 Display Link 

Display Link technology allows the exactly same user experience in all connected devices as 

that in the smartphone. Google's Android Auto, Apple's CarPlay, and Connected Car 

Consortium (CCC)'s MirrorLink play the leading role in Connected Car research. The CoCaP 

supports MirrorLink universally since MirrorLink is the global standard for Connected Car: 

Android, Windows, and Tizen that is based on mobile Linux.  

     We believe that this can deliver great benefit to drivers in the context of Connected Car 

since existing venders only supports the limited platforms: Android Auto is only supported on 

Android version 5.0 Lollipop and above, and CarPlay is only supported on iOS 7.1 and above. 

In addition, the vehicle control based on Android Auto and CarPlay requires manufacturer-

level supports. This limited support on restricted platform could significantly diminish the user 

experience in Connected Car domain. 

     The major IVI platform introduced in Chapter 2 supports MirrorLink as the connectivity 

for IVI devices and mobile devices. MirrorLink uses USB as an essential interface for the 

connection between IVI device and mobile device, and additionally supports WiFi and 

Bluetooth.  
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     MirrorLink transmits UI of the smartphone to the IVI display based on Remote Frame 

Buffer (RFB) using USB or WiFi P2P in a wired or wireless way. It next enables functions of 

VC, Call, Messaging, Productivity, Search, Navigation and Music to use. CoCaP develops 

MirrorLink-VSG Device using Raspberry Pi (RPi), an open hardware platform for the direct 

vehicle control through IVI and MirrorLink applications.  

MirrorLink-VSG Device supporting the VSG APIs operated on RPi. First, Serial Command 

Receiver is executed as background service in IVI device. Next, connection is executed when 

the MirrorLink application on the smartphone is executed by building a Web Server based on 

Node.js in MirrorLink-VSG Device. When a connection is done and IVI MirrorLink 

application calls VSG APIs, a message about corresponding API is transmitted to the RPi 

server. The MirrorLink-VSG Device is connected to the IVI device via UART. When a Server 

application receives a VSG API message, it is sent to the IVI Serial Command Receiver after 

checking the validity of the message. 

    MirrorLink-VSG-based message definition and data flow required for communication 

between MirrorLink application and RPi server are shown as Fig. 11. We note that Raspberry 

Pi is used as a device for message transfer between MirrorLink-VSG devices, but it is quite 

possible to use other devices supporting UART and WiFi.  

 

Fig. 11.  MirrorLink-VSG Message Format and Data Flow 

5. Experiments 

To integrate those components in one system, we deploy CoCaP in the real environment, a 

commercially manufactured ‘Ssangyong Tivoli’ consisting of: (i) vehicle control through 

applications based on IVI device and mobile device, (ii) the offer of services based on the 

result of the driver's emotional reasoning, (iii) the evaluation of the driving posture based on 

the driver's face tracking, and (iv) the normal operation of the vehicle control based on the 

MirrorLink application. We performed the test on these by using the CoCaP platform 

implemented based on Tizen IVI and Android platform.  

5.1 VSG-based Vehicle Control 

The CoCaP platform aims to provide a variety of new services for connected car. The most 

important one is the vehicle control by using IVI devices and mobile devices. Therefore, 

whether the application of IVI device and application of smartphone can control the vehicle 

through VSG APIs developed for the vehicle control is tested. The evaluation items and the 

types of devices for the evaluation are shown in Table 4. 

     By analyzing the BCM and E/E component for several vehicle models, the controllable 
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main components and network types of the vehicle are come out. We examine whether IVI 

device is well operated or not by calling VSG APIs through both the native and the web 

application of the IVI device. IVI device, smartphone, and smartwatch were all connected via 

WiFi. For the performance evaluation, the proper operation and the response time for each 

function were checked 20 times using IVI app, MirrorLink app, Smartphone App, and 

SmartWatch app, and then the average response count and time was calculated. Because it was 

a stable network environment based on WiFi, there was no case of failure of the response, but 

it can be confirmed that a slight difference in response time depending on the object of the 

request. 

 
Table 4. Average response time for VSG-based vehicle unit control requests (ms) 

Evaluation items IVI App 
MirrorLink 

App 
SmartPhone SmartWatch 

Vehicle startup On / Off  1.53 2.04 1.83 1.94 
Emergency light On / Off  1.23 1.59 1.57 1.76 

Door Lock / Unlock 1.73 2.41 2.37 2.65 
Window Open / Close 1.15 1.51 1.49 1.92 

Horn 1.04 1.98 1.95 2.05 
Low beam On / Off 1.27 1.46 1.48 1.97 

Sunroof On / Off 1.66 1.92 1.88 2.32 
Average Response Time 1.37 1.84 1.80 2.09 

5.2 Emotion Sensing 

Emergency situations such as the driver's fatigue, anger, and cardiac arrest are one of the major 

causes of accidents. To respond adequately to emergencies, the driver's bio-signals (PPG, GSR, 

SKT) are acquired and the driver's emotion is evaluated. Then, one of the Smart Care service 

models, which send a warning message to the driver via smartphone, wearable devices and 

controllable windows, emergency lights, a sunroof, a seat, etc., depending on the evaluation 

results, is implemented and tested. The device for collecting the bio-signals is shown in Fig. 

7. Here one device in the set of the bio-signal sensing devices is connected to the IVI device 

via UART, and the other device is composed to be used on the network (including both 

wired/wireless). APIs for requesting bio-signal measurement and sending and receiving results 

are also implemented based on UART and based on Bluetooth. Table 5 shows the evaluation 

items and the evaluation methods for bio-signal sensing devices. 

 
Table 5. The evaluation methods of the emotional reasoning based on Emotional Reasoning 

Framework and Sensing Device 
Evaluation items Evaluation methods 

Sensing Device Paring(BT) 
Check Bluetooth Paring/Connection of IVI device and 

Sensing Device 
Acquisition of physiologic signal  Acquisition of physiological signal via Sensing Device  

Data Communication 

 Request for the emotional reasoning between 
Bluetooth/USB-type sensing device and IVI/Smart 

Phone/Smart Watch, MirrorLink App and acquisition its 
results 

Sensing Device Enable/Disable 
Enable and Disable, Start and Stop Operation for a 

Sensing Device 

Emotion Reasoning 
Results of the emotional reasoning based on the 

emotional reasoning framework 

Service Link 
Appropriate application link according to the results of 

the emotional reasoning 
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The fact that whether or not USB-type and Bluetooth-type emotional reasoning device are 

operated properly is tested with the emotional reasoning device and framework. With IVI 

application, smart phone, smart watch, and MirrorLink application, we verified whether the 

driver's emotion is classified by comfort/discomfort/ awaken/relaxation/neutrality by using 

PPG, GSR and SKT data.  

5.3 Emotional Services 

One of the major causes of accidents while driving is drowsy driving and distracted driving. 

In the CoCaP platform, a camera and image processing are used to predict the driver's 

conditions, and give the driver a warning message to resolve the cause of the accident. The 

type of warning messages can be applied in the same way as described in the previous section. 

The biggest strength of Android-based IVI is that it provides various libraries, and OpenCV, 

widely used for image processing, is also easily portable. The OpenCV-based Haarcascade 

algorithm is used to detect the driver's face, and the area for the normal driving posture is set, 

and a warning message is sent to the driver when the posture is out of the normal state for 

more than a certain time or more than a certain number of times. Table 6 shows the evaluation 

items and evaluation methods for face recognition and the driver's condition using camera. 

 
Table 6. The evaluation item of driver’s posture based on Vision Sensing Framework  

Evaluation items Evaluation methods 
Camera Enable/Disable Check Camera Enable/Disable 

Background Face Tracking 
Face recognition and awake area setting based on 

Background processing 
Driver’s posture determination 

(Normal/Abnormal)  
Determination (Normal/Abnormal) by tracking the 

driver’s posture 

Alert 
Vehicle control such as emergency light, window, 

sunroof, etc., or alert using a smartphone and a smart 
watch in case of an abnormal posture 

Service Link 
Link application to induce relaxation or to make an 

emergency call in case of an abnormal posture 

 

     The application for evaluating the emergency situations such as driver's drowsy driving and 

fainting is executed in the background mode on the IVI device, so other applications such as 

navigation can be executed on the IVI device at the same time. If the driver is predicted to be 

in an abnormal posture, a message is shown that ‘awakens the driver’, or propose to relax to 

the users by using the vehicle's window, sunroof, seat shock, or warning sound. To give an 

alert is also possible by using a smartphone or a watch through cloud service. In addition, if 

the driver's posture continues to be in an abnormal state, it is also possible to make an 

emergency call to remotely check the driver's condition and to take an appropriate rescue. 

5.4 Mirror Link Services 

CoCaP supports MirrorLink in order to use smartphone's US on IVI devices. Unlike the 

original MirrorLink application, the CoCaP’s MirrorLink application makes it possible to 

obtain and to control the information of the vehicle status by calling VSG APIs. 
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Table 7. The evaluation items of the vehicle control based on MirrorLink application 
Evaluation items Evaluation methods 

MirrorLink Connection 
Check MirrorLink connection between a smartphone 

and IVI device 

MirrorLink Application 
Check the execution of MirrorLink application on IVI 

device 
Vehicle control based on MirrorLink 

application 
Check the VSG APIs call and the operation of 

MirrorLink application 

 

     The service applications based on the CoCaP is implemented as Android application 

compatible with universal MirrorLink. In this paper, for the direct control of the vehicle, VSG 

APIs of the vehicle control framework are called, and whether the vehicle is controlled is tested 

in the MirrorLink as well.   

6. Conclusions 

The CoCaP platform is an architecture designed to satisfy all requirements of Connected Car, 

enabling the collection of key data and the control of key components of the vehicle through 

VSG-based API and message clustering. It also enables the remote control based on universal 

mobile devices such as a smartphone, smart watch and IVI devices. Tizen IVI and Android 

are ported to Nexcom's VTC1010 and Freescale's i.MX6, respectively, in order to apply the 

CoCaP to the real-world environments, and consequently, to perform functional verification 

based on real cars. Vehicle Selective Gateway device is developed for the vehicle control on 

two types of the CoCaP and the controllability of each vehicle module are evaluated, and APIs 

for controllable objects are implemented. APIs are developed in two types to support both 

Native and Web Application, and each function is verified by connecting IVI device and VSG. 

In order to apply CoCaP to the actual vehicle, the control status of Hyundai Motors' Sonata 

and Ssangyong Motors' Tivoli depending on the API calls is successfully controlled. 

     The CoCaP enables the development of various services for vehicles and drivers based on 

the controllability of vehicles by using IVI and smartphones. It includes a vehicle control 

framework, an emotional reasoning framework, a driver vision sensing framework, a web 

framework and so on for the major services in the Connected Car domain. It also contains a 

cloud interface to connect various additional devices and web services. In this paper, we 

present empirical examples of Smart Care service based on (i) driver's bio-signals, (ii) the 

accident prevention service based on camera and face/head tracking among the major service 

models of the CoCaP. The method for the remote control of the vehicle through MirrorLink-

based smartphone application is also presented. The CoCaP based on Tizen IVI and Android, 

which is designed and developed in this paper, includes vehicles, IVI devices, mobile devices, 

clouds, and major frameworks for interoperability of various types of additional sensors and 

devices to help the driver and the vehicle. Some examples of the service models that Connected 

Car is aiming for are implemented and tested. The CoCaP is expected to serve as a reference 

platform for developing services in the Connected Car sector, and to be a cornerstone for the 

development of the next generation ICT convergence Car industry. 
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