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Abstract 
 

Recent internet development is helping malware researchers to generate malicious code 
variants through automated tools. Due to this reason, the number of malicious variants is 
increasing day by day. Consequently, the performance improvement in malware analysis is the 
critical requirement to stop the rapid expansion of malware. The existing research proved that 
the similarities among malware variants could be used for detection and family classification. 
In this paper, a Cross-Platform Malware Variant Classification System (CP-MVCS) proposed 
that converted malware binary into a grayscale image. Further, malicious features extracted 
from the grayscale image through Combined SIFT-GIST Malware (CSGM) description. Later, 
these features used to identify the relevant family of malware variant. CP-MVCS reduced 
computational time and improved classification accuracy by using CSGM feature description 
along machine learning classification. The experiment performed on four publically available 
datasets of Windows OS and Android OS. The experimental results showed that the 
computation time and malware classification accuracy of CP-MVCS was higher than 
traditional methods. The evaluation also showed that CP-MVCS was not only differentiated 
families of malware variants but also identified both malware and benign samples in mix 
fashion efficiently. 
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1. Introduction 
Rapid growth in malicious code variants has posed a serious threat to internet security. 
Symantec antivirus exposed more than 401 malicious code variants in a recent technical report 
(2016) [31]. Besides this, the presence of malware in mobile phones also increased. In the 
2016 year, Kaspersky Lab reported that the majority of mobile phones were insecure insense 
of unpatched vulnerabilities. In the 2017 year, the cyber financial threat report showed that 
banking malware attacked most of the users in Brazil, Vietnam, India, Russia, Germany, and 
the US. The report exposed 767072 trojans’ attacks in banks [32]. In the 2014 year, the 
Android technical reported 3.26 million malicious attacks. The number of users that 
encountered Android malware attacks was 767,072 [1]. 
 

.  

Fig. 1. Naming Scheme used by Microsoft Antivirus [30] 
 
Malware not only divided into various classes but also identified by platforms, families and 
variants. In this paper, we considered the naming convention used by Microsoft antivirus [30]. 
According to that naming convention, the first field indicated the platform on which the 
malware designed to execute such as Windows, MacOS and Android etc. The second field 
signified the family of malware that was determined by the structural similarity between 
different malware. The third field was variant which used to distinguish between different 
versions of the same family. The Fig. 1 showed the naming scheme used by Microsoft 
antivirus. Malware variants belonging to the same family must have a similar structure, and it 
is challenging to classify them into their relevant family.  

Most of the scanning methods use specific signatures to detect malware. These scanning 
methods are based on various techniques such as static and dynamic analysis. Static analysis 
works by disassembling and executing the code without a virtual environment. On the other 
hand, dynamic analysis works by running the code in a virtual environment. The dynamic 
study is time intensive and resource consuming as each malware executable must be executed 
for a specific time duration [3].  

Most of the static analysis techniques used signatures for malware identification. These 
methods showed low computational cost and high true positive rate. However, these 
techniques could easily expose by ordinary code obfuscation. Currently, instead of straight 
malicious code obfuscation, malware authors rely on packing tools. A packing tool is an 
application that converts one binary executable by using different compression techniques, 
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that appears in different file size than the original file size. Besides this, the signatures of these 
variants are also different from the actual one. Consequently, the Signature based techniques 
need to store new signatures of these variants. It leads to an exponential growth in the 
signature size and makes signature-based static analysis techniques less effective [33]. 

The expansion of malware is not only towards Windows OS but also towards also other 
platforms such as Android, Linux and OS X. According to an Android report of the year 2014, 
they detected 1.5 million Android malware applications. Likewise, Android malware, an 
exponential increase in Linux and OS X malware are also analysed. Hence, the focus of 
conventional malware detection methods such as static and dynamic code analysis is on a 
specific platform. Moreover, the static code analysis works by disassembling an executable 
file to analyse its control flow structure, and the dynamic code analysis works by real-time 
execution of binary in a virtual environment to examine its behavioural characteristics. 

Consequently, these methods are consuming too many resources due to the third party 
decompile tools.  

To target these challenges, this paper presented the following contributions: 

1) We proposed a method that could detect malware of multiple operating systems such as 
Windows OS and Android OS without knowing the difference between each operating 
system. 

2) We converted malware detection into an image classification problem by transforming 
malware binary into a grayscale image. The method was capable of differentiating both 
packed and unpacked malware binaries. 

3) We extracted CSGM features that were more suitable for malware variant detection and 
classification. The CSGM features consisted of local and global features of the malware 
image. 

4) Experimental outcomes indicated that CP-MVCS not only increased the classification rate 
up to 98.40% for 25 malware families but also achieved 97.29% classification accuracy 
for two classes( malware or benign). 

 
The remaining sections of the paper are arranged as follows. Section 2 states related works for 
malware detection, section 3 introduces a comprehensive methodology of CP-MVCS, section 
4 shows experimental results and discussion. Finally, section 5 presents the conclusion and 
future directions. 

2. Related Works 
 
One of the most emerging issues in the scientific community is malware variants detection and 
family classification, which has drawn the significant attention of security analysts. Currently, 
several works have been proposed such as graph-based methodologies [4] and [5], 
sequence-based instruction methods [6] and [7], API based monitoring methods [8] and [9] 
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and behavioural methods [10] etc. Even though these works are helpful to detect both malware 
and benign samples, but still, they have some problems such as they are unable to deal with 
new malware variants. For example, Naqqash Aman et al. [11] proposed a technique that used 
an enhanced and scalable version of the Cuckoo sandbox to generate behaviour reports. Later, 
these behaviour reports extracted features for training a machine learning classifier. Although 
their work could detect both pack and unpack malware executable still they were slow due to 
the usage of third party tool for example Cuckoo sandbox. 

Recently, several works have been proposed to analyse malware through visualization, for 
instance, Kyoung Soo Han et al. [12] suggested a method that used entropy graphs to detect 
and classify new malware and their variants. Similarly, Jae Hyun Lim et al. [2] proposed a way 
that transformed malware binary information into image matrices to classify new malware 
variants. Even though these works were useful to classify un-packed malware binaries, but 
still they were unable to deal with packed malware binaries. 

Various texture based visualization methods have been introduced to study new malicious 
code variants such as Nataraj et al. proposed that an image texture analysis be more suitable to 
classify the families of malware variants as compared to other existing malware analysis 
techniques. Nataraj converted malware binaries into images and then classified GIST based 
texture features with the nearest neighbour classifier. Parallel to Nataraj technique, kesav et al. 
[14] also proposed a low-level texture feature extraction technique for malware analysis. 
Kesay converted malware binaries into images and then extracted discrete wavelets transform 
based texture features for classification. Aziz et al. [15] extracted wavelet transform based 
texture features to identify new malware and their variants, and then supplied to feed forward 
artificial neural network for classification. Next, Konstantinos Kosmidis [16] described a 
two-step malware variant detection and classification method. In the first step, binary texture 
analysis applied through GIST. In the second step, these texture features classified by using 
machine-learning techniques such as classification and clustering to identify malware. 
Subsequently, Ban Xiao Fang et al. [17] proposed a malware detection method that extracted 
local binary features using SURF and then did fast fingerprint matching with LSH schemes. 

Although works mentioned above [13], [14], [15], [16] and [17] are helpful to detect and 
classify new malware and their variants, still they have some limitations. For instance, on the 
one hand, global texture features lose local information needed for classification. On another 
hand, they have significant computation overheads to process a vast amount of malware. 

 3. Methodology 
 
CP-MVCS designed to identify the families of known or unknown malware variants of 
Windows OS and Android OS. The entire architecture of the proposed method was shown in 
Fig. 2.  There are sixth phases in proposed malware detection architecture. First, the user scans 
the applications on a computer or mobile applications such as antivirus tools etc. Second, if the 
application is recognised, then the scan results are sent to the user’s computer or mobile phone. 
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Third, if the application is unrecognised, then the system transforms the classes. Dex file (in 
case of Android OS) or executable file (in case of Windows OS) into a grayscale image, as 
discussed in section 3.1. Fourth, these grayscale images further store on a database of 
back-end server. Fifth, these grayscale images feed into GPU computing pool of Matlab for 
identification with the trained CSGM features, as discussed in section 3.2. Sixth, the results are 
sent to the user’s computer or mobile phone. 

 

           

Fig. 2. The entire architecture of CP-MVCS 

3.1 Malware Binary Preprocessing 

In this paper, there was a need to unzip apk file for Android code visualization. Each apk file 
contained Dalvik Executable (DEX). We obtained byte code from apk file in three steps. First, 
we decompressed the apk file and received the class. Dex file. Second, we converted the class. 
Dex file into Java.Class file using the dex2jar tool. Finally, we used JD-GUI decompiler to 
extract byte code from Java.class file. The entire process is shown in Fig. 3. In the case of 
Windows code visualization, we took an executable file as an input data directly. Hence, there 
was no need to decompile code for Windows OS. 
 

APK FileAPK File Class.Dex FileClass.Dex File Java.Class FileJava.Class FileDex2Jar toolDex2Jar tool JD-GUI DecompilerJD-GUI Decompiler Byte codeByte code
 

Fig. 3. Android APK decompilation 

 
The concept of CP-MVCS is purely based on the construction of malware information from 
binary to an image. Our method for malware binary file to grayscale image transformation 
consisted of three significant steps. Firstly, the malware binary bit string separated into 
substrings. Each of substring was 8 bits in length and denoted as a pixel. Each eight-bit 
deliberated as an unsigned integer (0-255). Secondly, the malware binary bit string converted 
into a 1-D vector of decimal numbers. Thirdly, the 8-bit vector of decimal numbers 
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transformed into a two-dimensional matrix of the specified width. Finally, the two-dimension 
array directly converted a grayscale image. The entire process is shown in Fig. 2. Furthermore, 
the algorithm 1 described above steps briefly. 
 

 

 

 

 

 

 

 

 
 

 

         

 

   
(a) Malware. C2LOPP (b) Malware. C2LOPgen!g 

 

   
 

   

(c) Malware.Tesla (d) Malware.Zbot 
Fig. 4. Demonstration of benign and malware images 

 
Fig. 4 showed visualization results of proposed methods. From Fig. 4, it observed that 
malware variants belonging to the same family were similar in texture and layout. The 
malware variants belonging to the related family were different from each other in texture and 
design. Beside this, we also observed that malware image size is not fixed and the reason 
behind that it depended on the size of a malicious software program. 
 

 

Algorithm 1: Malware Binary to Grayscale Image Transformation 
 

Input: Malware Binary File MB
 1: File_Size        get_file_size(MB) 

2: Width            get_width(File_Size) 
3: Row             size(MB)/Width 
4: Column        Width/8 
5: Initialize arr[Row][Column] 
6: for i=0 to Row do do 
7:     for  j=0 to  Column do do 
8:        arr[i][j]=convert 8-bit to unsigned integer (0-255) 
9:    end for 
10: end for 
11:  Grayscale Image        convert 8-bit  vector to grayscale image 

 
Output: Grayscale Image 
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3.2 CSGM Features Extraction 

CSGM features extraction of CP-MVCS purely based on an image level, as both Dense SIFT 
and GIST descriptors extracted independent features from malware image. There are three 
steps to complete CSGM features extraction. The local features of malware image extracted by 
using Dense SIFT descriptor in the first step, which described the edges and corners of an 
image. The dimension of Dense SIFT descriptor reduced through Bag of Feature (BOF) [19] 
paradigm. There are four phases to reduce the dimension of Dense SIFT descriptor through 
BOF method. In the first phase, key features of malware image extracted from a dense grid 
with the help of Dense SIFT detector. In the second phase, Dense SIFT descriptor selected to 
compute 128-dimensional local features’ vector from the rectangular area where each key 
feature expressed by a function as shown in Eq. (1). 

FV dsift I s size boundsDSIFT = f (M , R , S , B )         (1)           

Where MI represented a binary image of dimension Dh×Dw; RS denoted resizing parameter; SSize 
denoted the size of Dense SIFT descriptor; Bbounds represented the rectangular area around each 
key point of a binary image. In our case, MI = (256,256) pixels; RS= (200,200) pixels; SSize =16 
and Bbounds was by default complete malware image respectively. 

In the third phase; the most illustrative patches of DSIFTFV needed to be identified, which 
clustered into a pre-defined number of clusters using K-means [20] clustering technique, 
whereas the whole process known as dictionary learning as shown in Eq.  (2). 

                                            L kmeans FV sizeDictionary = f (DSIFT  , D )     (2) 

Where Dsize denoted dictionary size, whose value was 256 in our case. 

 At the end; DSIFTFV assigned to closest visual features of pre-defined DictionaryL, whereas 
the entire process known as descriptor quantisation. Once the whole dictionaryL learnt, each 
quantised descriptor visualized in the form of a histogram. The value of histogram occurrences 
varied between [0-1] scale and then generated BOF based Dense SIFT description by 
calculating minimum Euclidean distance between DSIFTFV and DictionaryL, as shown in Eq. 
(3). 

MFD histogram FV LDSIFT = f (DSIFT , Dictionary )        (3) 

In our case, the total dimensionality of DSIFTMFD was 256. The complete sequence of reducing 
the dimension of Dense SIFT descriptor through BOF method is shown in Fig. 5.  

 The global features of malware image computed by using GIST descriptor [21] in the second 
step, which provided texture and spatial layout of an image. There were three phases to 
describe malware images through GIST descriptor. In the first and second phase of GIST 
description, malware image filtered through a filter of various scales and locations and then 
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separated into blocks. In the last step, the average value of each block computed by GIST 
descriptor. GIST description for malware image calculated by using Eq. (4). 

                 (4) 

Where MI represented a malware image of dimension Dh*Dw; RS denoted resizing parameter; 
Nb= (bx,by) represented a standard block size to divide malware image into horizontal and 
vertical locations; 

 

Fig. 5. BOF based on Dense SIFT description for malware image 

Boverlap denoted overlap parameter to separate binary image in overlap or non-overlap blocks; 
Fn represented a number of filters used to filter binary image, and Nsq denoted the number of 
statistical quantities, i.e. mean and deviation used while computing the features description. 
For our case, MI = (256,256) pixels; RS = (200,200) pixels; Nb = (4, 4); Boverlap =0; Fn =16; 
Nsq=1 and dimensionality of GISTMFD was 256 (Fn ×Nb ×Nsq =16×16×1=256) respectively. 
The sequence of steps to compute GIST description for malware image was shown in Fig. 6. 

 

Fig. 6. GIST description for malware image 

Finally, the combination of BOF based Dense SIFT descriptor with GIST descriptor obtained 
by integration, and dimensionality of resulting CSGM features was 512. The CSGM features 
description expressed by Eq.  (5). 
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FD MFD MFDCSGM = wDSIFT +(1-w)GIST     (5) 

Here, w represented weighting parameter whose value depended on feature contribution in 
malware classification. According to Hamad et al. [22], a small-scale feature point has more 
considerable similarity to local information but requiring a broader range of global 
information. Formula computed the Gaussian weighted [22] value for each pixel of the binary 
image in Eq. (6).The brief explanation on CSGM features description is shown in algorithm 2. 

 

2 2(( ) ( ) )

22( , ) 1

x x y yfeature feature

w x y e σ

− − − −

= −
                            

 (6) 

 

 
 
 
 
 
 
 

 

Algorithm 2: CSGM Features Extraction           
 

Input: DictionaryL          Dictionary Learning 
            DSIFTFV              DSIFT Feature Vector 
            DSIFTMFD            DSIFT Malware Feature Description 
            GISTMFD              GIST Malware Feature Description 
             W                       Weight Parameter 
 
1:  if             DictionaryL!= exist  then 
2:                 Compute DSIFTFV by using equation in (1) 
3:                 Construct DictionaryL for DSIFTFV by using K-means clustering equation (2) 
4: elseif       DictionaryL= exist AND DSIFTMFD ! = exist  then 
5:                 Compute  DSIFTFV by using equation (1) 
6:                 Compute minimum Euclidean distance between DSIFTFV and  DictionaryL 
7:                 Construct histogram for  DSIFTFV quantization by using equation (3) 
8:                 Save 256-dimensional BOF based  DSIFTMFD  for each image 
9:                 Compute and save 256-dimensional  GISTMFD for each image by using equation (4) 
10:                 Both  DSIFTMFD and GISTMFD are concatenated to form CSGMFD using equation(5) 
11:                 Calculate by using Gaussian weight formula in equation  (6) 
12:                 Save 512-dimensional CSGMFD for each image  
13: else          Initialize both DictionaryL and CSGMFD for Classification phase      
14: end 
 
Output: CSGM Feature Description           
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4. Experiments 
 
4.1 Experimental Setup and Setting 

The tests performed on CPU version Intel i5-4258U @ 240 GHz, the RAM was 4.0 GB, the 
operating system was Windows 10, and Matlab version R2017a developed the proposed 
method. The classifications and detections of CP-MVCS performed by Matlab [23] and Weka 
[24], which are open source data mining tools. Previously, several works [13, 14, 15, 16, 17] 
used machine-learning classification for malware detection with Naïve Bayes (NB), Nearest 
Neighbor (KNN) and Support Vector Machine (SVM).  To obtain the best suitable classifier 
for experimentation, these classifiers compared with each other on Malimg dataset, as shown 
in Table 1. Due to the imbalanced dataset, the F-measure considered for comparison of all 
classifiers. The F-measure of KNN was 1.7% higher than that of NB and 6.4% higher than that 
of SVM. Using KNN classification algorithm of CP-MVCS, most of the performance 
indicators attained better results. For final classification of CP-MVCS, KNN was best suitable 
classifier between SVM and NB. 

Table 1. The comparison of the performance of CP-MVCS on different classification algorithms 
Classification Method TPR FPR F-measure Accuracy 

 

SVM 0.902 0.0017 0.907 0.902 
NB 0.965 0.001 0.954 0.967 

KNN=3 0.982 0.0007 0.971 0.984 
 
Zhihua et al. [36] indicated that texture features were lost in a smaller size image. While 
texture features were more apparent in larger size image, they also mentioned that bigger 
image required high computational time for training. From Table 2, CP-MVCS took more 
time to train larger image size. Therefore, we reshaped malware image into 256*256 size, as 
CP-MVCS performed better on that image size. 

Table  2. The comparison of the performance of CP-MVCS on different image ratios 
Image Ratio Accuracy (%) Prediction Time (sec) 

 

156*156 95.57 9.43 
256*256 98.40 9.62 
356*356 98.87 16.39 

 
Finally, three kinds of matrices such as True positive ratio, False positive ratio, F-measure and 
accuracy used for performance evaluation. Here, True positive and False positive represented 
the number of malware samples false and true classified. Similarly, the True negative and 
False negative represented the number of benign samples false and true classified. 

True PositiveTrue Positive Ratio = 
True Positive+False Negative

                                                     (7) 
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False PositiveFalse Positive Ratio = 
False Positive+True Negative

                                                    (8) 

2*True PositiveF-measure = 
2*True Positive+FalsePositive+False Negative

                                    (9) 

True Positive+True NegativeAccuracy = 
True Positive+True Negative+FalsePositive+False Negative

              (10) 

4.2 Malware Datasets Collection  
Four public datasets: Malimg dataset, Malheur dataset, Virus share dataset and Android 
dataset used for evaluating CP-MVCS. Malimg dataset consisted of 9339 samples belonging 
to 25 Windows malware families and contained 617 benign samples. The dataset is the 
mixture of both packed and unpacked malware samples obtained from vision research lab of 
University California [25]. Malheur database obtained from a security research group of the 
University of Erlangen [26], which consisted of 3131 unpacked samples from 24 malware 
families. For experimental purpose, we selected only 17 malware families who had at least 13 
samples. Virus share dataset [27] obtained from Virus share portal, which comprised over 
unpacked 2630 samples belonging to 14 Windows malware families. To assure that all those 
samples were malware, we scanned them using Virus Total [34]. We selected only those 
samples, which were reported as malicious. For labelling these samples, we used the label 
provided by Microsoft antivirus, as listed in Table 3. Beside this, we collected 4000 Android 
malware samples and 2000 benign Android samples from IKM Laboratory National Cheng 
Kung University, Taiwan [28]. 
 

Table 3. Information on malware samples 
Dataset Malware Families 

 

Malimg        [25] 
 

Adialer.C, AgentFY.I, Allaple.A, Allaple.L, Aluerongen!.J, Autorun.K, 
C2LOPgen!g, C2LOP.P, Dialplatform.B, Dontovo.A, Fakerean, Instantaccess, 
Lolyda.AA1, Lolyda.AA2, Lolyda.AA3, Lolyda.AT, Malexgen!.J, 
Obfuscator.AD, Rbot!gen, Skintrim.N, Swizzorgen!E, Swizzorgen! 
I,VB.AT,Wintrim.BX,Yuner.A 

Virus share [27] 
 

Adnel, Ardamax, Bartallex, Conficker, Cutwail, IRCBOT, Locky, Rbot, Sirefef, 
Tesla, Zbot, Phobi, Rootkit, Agent 

Malheur      [26] 
 

Adult Browser, Allapl.E, Bancos, Casino, Fly studio, Looper, Porndialer, 
Rotator, Salty, Spygames, Swizzor, Vapsup, Viking Dll, VikingDz, Virut, 
Woikoiner, Zhelatin 

 

4.3. Experimental Results 

4.3.1 Effect of Different sizes of Training Sets on Classification Rate of CSGM 
features 

Several experiments conducted to compare the performance of CSGM features over 
traditional features, i.e. GIST features and Dense SIFT features. GIST is the global descriptor 
whose dimensionality is 512, whereas dimensionality of Dense SIFT descriptor is 512. Apart 
from these, CSGM features are the combination of both Dense SIFT and GIST features whose 
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dimensionality is 512. In this experiment, CP-MVCS evaluated with a compressed training set. 
The experimental samples took from Malheur dataset [26]. The research conducted on three 
types of features named Dense SIFT features (shape, edge), GIST features (texture) and CSGM 
features (edge, Shape, and texture). By comparing classification results of different feature 
extraction techniques in Fig. 7, it concluded that the CSGM features were superior to individual 
GIST features or Dense SIFT features. The comparison of feature extraction techniques 
measured by overall accuracy. The lowest classification rate on CSGM features was 62.33% 
when the size of the training set reduced to 10% of the total dataset. When the training set was 
about 80 % of the entire dataset, the maximum classification rate on CSGM features was 
94.13%. Besides this, the accuracy of Dense SIFT features 4.89% was higher than GIST 
features. Even though GIST features achieved the lowest efficiency, but it increased the 
efficiency of Dense SIFT features by 12.01%. Hence, it concluded that the addition of GIST 
features naturally enhanced the effect of the overall classification. The overall result also 
showed that the classification accuracy of CP-MVCS was not over-reliant on the training set. 
To reduce the risk of misclassification, we selected 80% training and 20% test data for further 
experimentation. 

 
 Fig. 7. Classification rate for different sizes of training sets  

4.3.2. Effect of CSGM features on Classification Rate and Run Time Cost 

Three cases considered for evaluating classification performance and run time cost between 
CSGM features and traditional features. The classification stability of CSGM features 
identified by examining the classification performance of each family with overall run time 
improvement in case I. The detection performance with betterment in running time of CSGM 
features evaluated by unknown malware detection in case II and case III respectively. The 
detail experimental results of three cases discussed one by one in this section. 

The case I: The critical section of the experimental repository was malware samples, collected 
from Malimg dataset [25]. Malimg dataset randomly separated into a training set, and the 
resemblance between families of the training set computed through three different types of 
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features in this case. The comparison of the overall classification rate among CSGM features 
and traditional features was shown in Table 4. As shown in Table 4, CSGM features 
outclassed the conventional features in the terms overall classification accuracy. The 
maximum accuracy obtained on CSGM features was 98.40%, whereas it provided the highest 
TP rate (98.20%) and lowest FP rate (0.07%) among traditional features. 

Table 4. Comparison of classification rate among CSGM features and former features in Case I 
Features Type Feature-length TPR (%) FPR (%) Classification Accuracy (%) 

 

Dense SIFT 512 89 0.19 89.29 
GIST 512 93.10 0.13 93.44 

CSGM 512 98.20 0.07 98.40 
 

The classification accuracy results for three different types of features were shown in Fig. 8. 
The experimental outcomes also showed that the CSGM features achieved better 
classification accuracy than former features among most malware families. The The 
entire classification of CSGM features between each malware family was shown with various 
evaluation matrices in Fig. 9. 

 

 
Fig. 8. Comparison of classification accuracy among CSGM features, Dense SIFT features and GIST 

features. 
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Fig. 9. Classification of CSGM features among each malware family with various performance 
matrices 

The experimental results showed that average classification accuracy of CSGM features 
ranged from 0.98-1. The results showed that the CSGM features classified most of the malware 
families with better accuracy, TP rate, F-measure and lowest FP rate. The range of TP rate was 
0.84-1 and FP rate was 0-0.0129. The classification accuracy of CSGM features among each 
malware family also presented with confusion matrix in Fig. 10.  

 
 

Fig. 10. Confusion matrix among each malware family for CSGM features 

The confusion matrix indicated that CSGM features separated most of the malware families 
efficiently. However, there was confusion among families Allaple .A, Allaple .L, 
Aluerongen! .J, C2LOP.P, C2LOPgen!.g, Lolyda.AA1, Lolyda.AA2, Lolyda.AT, 
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Lolyda.AA3, Obfuscator.AD, Rbot! gen, Swizzorgen! .E and Swizzorgen! .I. Most of these 
were variants of Allaple, C2LOP, Lolyda and Swizzorgen families, which meant that image 
visualization of variants of these families appears similar in structure. 

Case II: The entire families of Malimg dataset [25] combined as a malware set. The dataset 
consisted of 9339 malware samples and 617 benign samples. The samples include in test data 
were unknown as they were not used in the training phase. The overall detection accuracy of 
three diverse types of features was shown in Table 5.  

Table 5.  Comparison of classification rate between CSGM features and former features in Case II 
Features Type Feature-length TPR (%) FPR (%) Classification Accuracy (%) 

 

Dense SIFT 512 88.46 0.20 88.68 
GIST 512 90.84 0.19 91.16 

CSGM 512 97.20 0.09 97.29 

CSGM features outperformed conventional features regarding overall detection accuracy. The 
overall detection accuracy (97.29 %) with highest TP rate (97.20 %) and lowest FP rate 
(0.09 %) achieved on CSGM features. Hence, in the case of maximum training samples, it 
concluded that the CSGM features were more suitable to deal with unknown malware 
detection than the previous features. 

Case III: To minimise the effect of unbalance data in Malimg dataset [25], the ratio of data 
kept same to ensure that the proportion of each family of training and test sets remained the 
same. After picking 617 malware and 617 benign samples, three different types of features 
used to evaluate the detection performance of unknown malware. The dimension of features 
minimized to 256. The results for the detection accuracy of each kind of features were shown 
in Table 6. The accuracy of GIST features 8.9% was higher than that of the Dense SIFT 
features. Though the accuracy of the Dense SIFT features was lowest, it considerably 
enhanced the overall efficiency of GIST features by 1%. It showed that the addition of local 
feature always increased the effect of detection.  

Table  6. Comparison of classification rate between CSGM features and former features in Case III 
Features Type Feature-length TPR (%) FPR (%) Classification Accuracy (%) 

 

Dense SIFT 256 89.00 10.57 89.43 
GIST 256 97.97 3.07 97.40 

CSGM 256 98.00 2.04 97.96 
 

Run time cost: The prediction time of different features recorded on Malimg dataset [25]. The 
dimension of each feature was 512. In Fig. 11, the prediction time of GIST features was 0.4 
seconds longer than Dense SIFT features. While the prediction time of GIST features was 0.2 
seconds longer than CSGM features. Although the extraction time of CSGM features was 
slightly shorter than GIST features, still it was more accurate to process small-scale and 
large-scale malware features, as discussed in the above experimentation. 
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Fig. 11. Prediction time cost for CSGM, GIST and Dense SIFT features 

4.3.3. Effect of Packed Malware on CP-MVCS Classification Rate 

There was a misunderstanding that if two malware binaries belonging to different families 
were packed (code obfuscation) using the same packer, then they had similar characteristics. 
Unfortunately, the conventional static code analysis techniques did not capture the structural 
features of a malware binary. After packing with the same packer, the images of malware 
variants belonging to different families were indeed different [33]. In our malware 
visualization results, the visual similarity among packed variants of a family maintained as 
shown in Fig. 12 (a-b). We also observed that unpacked variants of both families were 
completely different from their packed variants in Fig. 12 (c-d). 
 

 

  

 

  
(a) Packed Agent.FUPX (b) Packed Phobi.FUPX 

    

(c) Unpacked Agent (d) Unpacked Phobi 
Fig. 12. Unpacked and packed variants of Agent and Phobia families  
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For our case, we collected 181 unpacked binary executables from Virus share [27] portal. As 
we performed supervised learning of classification, we labelled these binary executables using 
Virus total [34] search engine. To evaluate the performance of CP-MVCS over packed 
malware, we selected 48 unpacked binary executables and packed them using FUPX packing 
tool [35]. We performed dataset mixing using two different ways. First, we prepared eight 
families dataset by mixing unpacked and the packed malware families. We treated packed 
families as new families as shown in Fig. 13 (a). We attained 87.86% classification accuracy 
while took only 181 samples (133 unpacked samples and 48 packed samples) of 8 malware 
families. Second, we prepared five families dataset by mixing packed and unpacked malware 
families. We treated packed and unpacked families as a single family as shown in Fig. 13 (b). 
We obtained 78.26% classification accuracy while took only 181 samples (133 unpacked 
samples and 48 packed samples) of 5 malware families. For both experiments in CP-MVCS, 
the packed variants did not misclassify with their unpacked variants. The results showed that 
similarity was preserved in the dataset, which contained both unpacked and packed malware 
variants.  

 
 

 
(a) 8 Families Dataset (Acc=87.86%) (b) 5 Families Dataset (Acc=78.26%) 

Fig. 13. Confusion matrix for both Unpacked and Packed malware families  

4.3.4 Effect of Datasets from Different Operating Systems on CP-MVCS 
Classification Rate 

The classification accuracy of CP-MVCS verified on malware samples of Windows OS and 
Android OS. The experiment performed on five popular malware datasets of Windows OS and 
Android OS. In each dataset, the number of malware families described in Table 3. The 
performance of CP-MVCS over Windows OS and Android OS was shown in Table 7.  

Table 7.  Effect of datasets from different operating systems on CP-MVCS classification rate 
Dataset Operating System TPR FPR Classification Accuracy 

 

Virusshare             [27] Window OS 0.962 0.005 0.962 
Malheur                [26] Window OS 0.975 0.0005 0.975 
IKM Laboratory [28] Android OS 0.975 0.03 0.963 
Virusshare + IKM Lab Window OS + Android OS 0.909 0.09 0.909 
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To verify the performance of CP-MVCS on combine dataset of Android OS and window OS, 
we collected 1191 Windows malware samples,1999 Android malware samples and 1000 
benign Android samples for the experiment.  We observed that performance of CP-MVCS was 
less accurate as compared to individual datasets of window OS and Android OS, but still, it 
was acceptable. For combine datasets of Android OS and window OS, CP-MVCS obtained 
maximum classification accuracy, as shown in Table 7. Hence, it proved that the classification 
accuracy of CP-MVCS was not over-reliant on malware samples of the specific operating 
system. 

4.3.5 Comparison of CP-MVCS with Existing Previous Methods 

CP-MVCS compared with texture-based visual analysis and bigram based static analysis to 
evaluate the overall performance regarding classification accuracy. The texture based 
visualization approaches proposed in [13], [15] and [16] compared with CP-MVCS were 
shown in Table 8. The comparison conducted within Malimg dataset [25]. CP-MVCS showed 
highest classification rate (99.21%) by processing 5288 samples from 8 malware families in 
Malimg dataset. Similar to that, CP-MVCS also showed better classification rate (98.40%) by 
taking 9339 samples from 25 malware families in Malimg dataset. Hence, it proved that 
CP-MVCS was more appropriate for processing the massive amount of malware samples as 
compared to other proposed works in [13], [15] and [16]. 

Table 8. Comparison of CP-MVCS with proposed malware visualization approaches 

Method Feature Types 
No. of Malware 

Families 
 

No. of Malware 
Samples 

Classification 
Accuracy (%) 

 

Nataraj et al [13] GIST 8 1713 99.93 

Aziz et al     [15] Gabor Wavelet, 
DWT, GIST 8 3320 98.88 

Our method CSGM 8 5288 99.21 
Nataraj et al          [13] GIST 25 9339 97.18 
Konstantinos etal [16] GIST 25 9339 91.60 

Our method CSGM 25 9339 98.40 
 

Further, CP-MVCS compared with bigram based static analysis approach proposed in [29]. 
The complete comparison of both techniques with Malimg dataset [25] was shown in Table 9. 

Table  9. Comparison of CP-MVCS with traditional n-gram static analysis approach  

Method Feature Types No. of Families No. of Malware 
Samples 

Classification 
Accuracy (%) 

 Karim et al [29] Bigram 8 1713 98 
Our method CSGM 8 5288 99.21 

 

The overall classification time of CP-MVCS was 3.7 seconds; whereas the total classification 
time of proposed bigram based static analysis in [29] was 5 seconds. From Table 9, it 
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observed that overall classification accuracy of CP-MVCS was much better as compared to 
bigram based static analysis approach proposed in [29]. 

5. Conclusion and Future work 
 
In this paper, a CP-MVCS has been proposed to analyze malware by processing malware 
binaries as images visually. Our proposed CP-MVCS showed that variants belonging to same 
malware family appear similar when they are converted to images. To get an ideal 
performance of CP-MVCS, the visual similarities among malware variants are computed 
through CSGM features description, and they are classified with various machine-learning 
methods. Experimental outcomes showed that CP-MVCS detects malware variants and 
organize families with a small false positive and a high true positive rate. It is not only 
differentiated families of malware variants but also identifies mix malware and clean samples 
efficiently. Although proposed CP-MVCS approach for malware variant detection and 
classification is novel, still it is unable to detect section relocation. Due to this shortcoming, we 
need to explore more localized feature extraction schemes such as LBP (Local Binary Pattern). 
Even though in CP-MVCS, the classification time cost is better as compared to traditional 
methods but still it needs to be more improved. We will use the  PCA (Principal Component 
Analysis) to target this issue. Moreover, in CP-MVCS, we used BOF model for local features 
description, and local feature description is computed through K-means clustering algorithm 
that is much slower. Hence, instead of K-means clustering algorithm, in future, we can use 
other clustering algorithms such as GMM (Gaussian Mixture Model) for local features 
description in BOF model. 
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