• Title/Summary/Keyword: Analytics Results

Search Result 282, Processing Time 0.028 seconds

Production Planning Method Using the Push-back Heuristic Algorithm: Implementation in a Micro Filter Manufacturer in South Korea

  • Sung, Shin Woong;Jang, Young Jae;Lee, Sung Wook
    • Industrial Engineering and Management Systems
    • /
    • v.14 no.4
    • /
    • pp.401-412
    • /
    • 2015
  • In this paper, we present a modeling approach to production planning for an actual production line and a heuristic method. We also illustrate the successful implementation of the proposed method on the production line. A heuristic algorithm called the push-back algorithm was designed for a single machine earliness/tardiness production planning with distinct due date. It was developed by combining a minimum slack time rule and shortest processing time rule with a push-back procedure. The results of a numerical experiment on the heuristic's performance are presented in comparison with the results of IBM ILOG CPLEX. The proposed algorithm was applied to an actual case of production planning at Woongjin Chemical, a leading manufacturer of filter products in South Korea. The seven-month execution of our algorithm led to a 24.5% decrease in the company's inventory level, thus demonstrating its practicality and effectiveness.

A study on the use of a Business Intelligence system : the role of explanations (비즈니스 인텔리전스 시스템의 활용 방안에 관한 연구: 설명 기능을 중심으로)

  • Kwon, YoungOk
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.155-169
    • /
    • 2014
  • With the rapid advances in technologies, organizations are more likely to depend on information systems in their decision-making processes. Business Intelligence (BI) systems, in particular, have become a mainstay in dealing with complex problems in an organization, partly because a variety of advanced computational methods from statistics, machine learning, and artificial intelligence can be applied to solve business problems such as demand forecasting. In addition to the ability to analyze past and present trends, these predictive analytics capabilities provide huge value to an organization's ability to respond to change in markets, business risks, and customer trends. While the performance effects of BI system use in organization settings have been studied, it has been little discussed on the use of predictive analytics technologies embedded in BI systems for forecasting tasks. Thus, this study aims to find important factors that can help to take advantage of the benefits of advanced technologies of a BI system. More generally, a BI system can be viewed as an advisor, defined as the one that formulates judgments or recommends alternatives and communicates these to the person in the role of the judge, and the information generated by the BI system as advice that a decision maker (judge) can follow. Thus, we refer to the findings from the advice-giving and advice-taking literature, focusing on the role of explanations of the system in users' advice taking. It has been shown that advice discounting could occur when an advisor's reasoning or evidence justifying the advisor's decision is not available. However, the majority of current BI systems merely provide a number, which may influence decision makers in accepting the advice and inferring the quality of advice. We in this study explore the following key factors that can influence users' advice taking within the setting of a BI system: explanations on how the box-office grosses are predicted, types of advisor, i.e., system (data mining technique) or human-based business advice mechanisms such as prediction markets (aggregated human advice) and human advisors (individual human expert advice), users' evaluations of the provided advice, and individual differences in decision-makers. Each subject performs the following four tasks, by going through a series of display screens on the computer. First, given the information of the given movie such as director and genre, the subjects are asked to predict the opening weekend box office of the movie. Second, in light of the information generated by an advisor, the subjects are asked to adjust their original predictions, if they desire to do so. Third, they are asked to evaluate the value of the given information (e.g., perceived usefulness, trust, satisfaction). Lastly, a short survey is conducted to identify individual differences that may affect advice-taking. The results from the experiment show that subjects are more likely to follow system-generated advice than human advice when the advice is provided with an explanation. When the subjects as system users think the information provided by the system is useful, they are also more likely to take the advice. In addition, individual differences affect advice-taking. The subjects with more expertise on advisors or that tend to agree with others adjust their predictions, following the advice. On the other hand, the subjects with more knowledge on movies are less affected by the advice and their final decisions are close to their original predictions. The advances in predictive analytics of a BI system demonstrate a great potential to support increasingly complex business decisions. This study shows how the designs of a BI system can play a role in influencing users' acceptance of the system-generated advice, and the findings provide valuable insights on how to leverage the advanced predictive analytics of the BI system in an organization's forecasting practices.

Utilizing the Idle Railway Sites: A Proposal for the Location of Solar Power Plants Using Cluster Analysis (철도 유휴부지 활용방안: 군집분석을 활용한 태양광발전 입지 제안)

  • Eunkyung Kang;Seonuk Yang;Jiyoon Kwon;Sung-Byung Yang
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.79-105
    • /
    • 2023
  • Due to unprecedented extreme weather events such as global warming and climate change, many parts of the world suffer from severe pain, and economic losses are also snowballing. In order to address these problems, 'The Paris Agreement' was signed in 2016, and an intergovernmental consultative body was formed to keep the average temperature rise of the Earth below 1.5℃. Korea also declared 'Carbon Neutrality in 2050' to prevent climate catastrophe. In particular, it was found that the increase in temperature caused by greenhouse gas emissions hurts the environment and society as a whole, as well as the export-dependent economy of Korea. In addition, as the diversification of transportation types is accelerating, the change in means of choice is also increasing. As the development paradigm in the low-growth era changes to urban regeneration, interest in idle railway sites is rising due to reduced demand for routes, improvement of alignment, and relocation of urban railways. Meanwhile, it is possible to partially achieve the solar power generation goal of 'Renewable Energy 3020' by utilizing already developed but idle railway sites and take advantage of being free from environmental damage and resident acceptance issues surrounding the location; but the actual use and plan for these solar power facilities are still lacking. Therefore, in this study, using the big data provided by the Korea National Railway and the Renewable Energy Cloud Platform, we develop an algorithm to discover and analyze suitable idle sites where solar power generation facilities can be installed and identify potentially applicable areas considering conditions desired by users. By searching and deriving these idle but relevant sites, it is intended to devise a plan to save enormous costs for facilities or expansion in the early stages of development. This study uses various cluster analyses to develop an optimal algorithm that can derive solar power plant locations on idle railway sites and, as a result, suggests 202 'actively recommended areas.' These results would help decision-makers make rational decisions from the viewpoint of simultaneously considering the economy and the environment.

Investigation of Terminology Coverage in Radiology Reporting Templates and Free-text Reports

  • Hong, Yi;Zhang, Jin
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.5 no.1
    • /
    • pp.5-14
    • /
    • 2015
  • The Radiological Society of North America (RSNA) is improving reporting practices by developing an online library of clear and consistent report templates. To compare term occurrences in free-text radiology reports and RSNA reporting templates, the Wilcoxon signed-rank test method was applied to investigate how much of the content of conventional narrative reports is covered by the terms included in the RSNA reporting templates. The results show that the RSNA reporting templates cover most terms that appear in actual radiology reports. The Wilcoxon test may be helpful in evaluatingexisting templates and guiding the enhancement of reporting templates.

A Comparative Study of the Trends of Current Science Education and the System Thinking Paradigm (현대 과학교육의 동향과 시스템사고 패러다임의 비교 연구)

  • Kim, Man-Hee;Kim, Beom-Ki
    • Journal of The Korean Association For Science Education
    • /
    • v.22 no.1
    • /
    • pp.64-75
    • /
    • 2002
  • The purposes of this study are to understand the trends of current science education compared with thinking paradigm and to find the direction of reform in holistic view. It is divided into three parts. Firstly, significant trends of science education during the late 20th century were examined. Secondly, the current society was discussed, particularly focused on the thinking paradigm. Thirdly, the science education trends and thinking paradigms were compared. The results are 1) A major goal of contemporary science education is the scientific literacy, for which the constructivist and STS class are introduced, 2) Thinking paradigm is changing from analytics to systemics, and 3) Compared the current science education and system thinking paradigm, they seem consistent in respect of looking for the whole-part relationship.

Supervised Learning-Based Collaborative Filtering Using Market Basket Data for the Cold-Start Problem

  • Hwang, Wook-Yeon;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • v.13 no.4
    • /
    • pp.421-431
    • /
    • 2014
  • The market basket data in the form of a binary user-item matrix or a binary item-user matrix can be modelled as a binary classification problem. The binary logistic regression approach tackles the binary classification problem, where principal components are predictor variables. If users or items are sparse in the training data, the binary classification problem can be considered as a cold-start problem. The binary logistic regression approach may not function appropriately if the principal components are inefficient for the cold-start problem. Assuming that the market basket data can also be considered as a special regression problem whose response is either 0 or 1, we propose three supervised learning approaches: random forest regression, random forest classification, and elastic net to tackle the cold-start problem, comparing the performance in a variety of experimental settings. The experimental results show that the proposed supervised learning approaches outperform the conventional approaches.

Considerations for generating meaningful HRA data: Lessons learned from HuREX data collection

  • Kim, Yochan
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1697-1705
    • /
    • 2020
  • To enhance the credibility of human reliability analysis, various kinds of data have been recently collected and analyzed. Although it is obvious that the quality of data is critical, the practices or considerations for securing data quality have not been sufficiently discussed. In this work, based on the experience of the recent human reliability data extraction projects, which produced more than fifty thousand data-points, we derive a number of issues to be considered for generating meaningful data. As a result, thirteen considerations are presented here as pertaining to the four different data extraction activities: preparation, collection, analysis, and application. Although the lessons were acquired from a single kind of data collection framework, it is believed that these results will guide researchers to consider important issues in the process of extracting data.

Analytics of PIV Measurement and Its Application for Higher Performances

  • NISHIO Shigeru;SUGII Yasuhiko
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.62-74
    • /
    • 2001
  • Present paper describes the principles of PIV measurement approaching from the analytical view, which enables to explain the general form of principles covering all the PIV measurement, and that gives theoretical basis for its higher measurement performances. The explanation of the measurement principles started from the definition of governing equation in differential form as same as the gradient method, and the integral along the particle path line was executed to show the principle of the correlation method with same basis. The integral processes clearly shows the analytical reason why the correlation peak gives the terminal point of path line, and how the effects of deformation and rotation of fluid appears in the correlation map. These results have no differences from our experiences and understandings of the conventional PIV measurement definition in final form. However, the analytical approach enable to understand those facts a priori, and it makes easy to achieve the innovative higher performances of measurement. Analytical explanation clearly shows the behavior of the residual errors caused by the fluid motion, and it enables to analyze the measurement uncertainty theoretically.

  • PDF

Multi-Label Classification Approach to Location Prediction

  • Lee, Min Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.10
    • /
    • pp.121-128
    • /
    • 2017
  • In this paper, we propose a multi-label classification method in which multi-label classification estimation techniques are applied to resolving location prediction problem. Most of previous studies related to location prediction have focused on the use of single-label classification by using contextual information such as user's movement paths, demographic information, etc. However, in this paper, we focused on the case where users are free to visit multiple locations, forcing decision-makers to use multi-labeled dataset. By using 2373 contextual dataset which was compiled from college students, we have obtained the best results with classifiers such as bagging, random subspace, and decision tree with the multi-label classification estimation methods like binary relevance(BR), binary pairwise classification (PW).

Web-Enabler: Transformation of Conventional HIMS Data to Semantics Structure Using Hadoop MapReduce

  • Idris, Muhammad;Lee, Sungyoung
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.137-139
    • /
    • 2014
  • Objective: Data exchange, interoperability, and access as a service in healthcare information management systems (HIMS) is the basic need to provision health-services. Data existing in various HIMS not only differ in the basic underlying structure but also in data processing systems. Data interoperability can only be achieved when following a common structure or standard which is shareable such as semantics based structures. We propose web-enabler: A Hadoop MapReduce based distributed approach to transform the existing huge variety data in variety formats to a conformed and flexible ontological format that enables easy access to data, sharing, and providing various healthcare services. Results: For proof of concept, we present a case study of general patient record in conventional system to be enabled for analysis on the web by transforming to semantics based structure. Conclusion: This work achieves transformation of stale as well as future data to be web-enabled and easily available for analytics in healthcare systems.