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Lesson learned

To enhance the credibility of human reliability analysis, various kinds of data have been recently
collected and analyzed. Although it is obvious that the quality of data is critical, the practices or con-
siderations for securing data quality have not been sufficiently discussed. In this work, based on the
experience of the recent human reliability data extraction projects, which produced more than fifty
thousand data-points, we derive a number of issues to be considered for generating meaningful data. As
a result, thirteen considerations are presented here as pertaining to the four different data extraction
activities: preparation, collection, analysis, and application. Although the lessons were acquired from a
single kind of data collection framework, it is believed that these results will guide researchers to
consider important issues in the process of extracting data.
© 2020 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Simulation data

1. Introduction

After the significant extent that human errors contribute to
system safety was revealed [1], various efforts have been made to
reduce human errors in safety-critical systems. Human reliability
analysis (HRA) is one approach among such efforts that (1) sys-
tematically analyzes human-machine systems, (2) predicts the
possibility of human errors by integrating human failure mecha-
nisms with system failure scenarios, and (3) facilitates communi-
cation between safety engineers and scientists in different areas
using quantitative measures for improving systems in terms of
human error. In the past several decades, multiple HRA techniques
have been developed and successfully applied in diverse industries
such as nuclear power plants (NPPs), chemical plants, air-traffic
systems, and healthcare systems [2].

Despite the usefulness of HRA, the availability and quality of
data supporting HRA techniques have been recognized as one of the
most vulnerable aspects [3,4]. Data that have been practically
employed in HRA techniques to date have largely relied on expert
judgment or quite old sources, and rigorous treatments for the data
have been insufficient to derive insights for human reliability [5].

There have been significant efforts to collect HRA data. For
example, Kirwan et al. [6] developed the CORE (Computerized
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Operator Reliability and Error) database that includes human error
probability (HEP) information obtained from different sources.
Strater and Bubb [7] accumulated CAHR (Connectionism Assess-
ment of Human Reliability) data from boiling water reactors that
contains HEPs and their relevant situations. The HERA (Human
Event Repository and Analysis) database was generated from event
investigations of NPPs [8]. Likewise, the GRS (Gesellschaft fiir
Anlagen und Reaktorsicherheit) produced 37 HEPs from licensee
event reports in German NPPs [9]. The HAMMLAB (Halden Reactor
Project's Human-Machine Laboratory) conducted the experiments
using full-scope simulators to extract human reliability informa-
tion, including HEPs and contextual information, and compared the
empirical findings with HRA results [10]. The US Nuclear Regulatory
Commission (NRC) [11] also obtained empirical HEP distributions
for four human failure events (HFEs) from training records of US
operators. In more recent years, the SACADA (Scenario Authoring,
Characterization, and Debriefing Application) and HuREX (Human
Reliability data EXtraction) databases represent the briskest data
collection activities [12,13]. These databases primarily collected
HRA data from full-scope simulators. Based on observations of crew
behaviors or interviews with licensed operators, human errors
were identified and contextual information was obtained. Besides,
the variety of experiments and analyses on human reliability and
performance that has been conducted [14].

Despite several kinds of databases supporting HRAs have been
proposed and implemented recently, considerations for enhancing
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1. Preparation

the quality of data have not been sufficiently discussed yet [15]. The
importance of data quality has been emphasized several times in
various fields featuring data analytics [16,17]. Extraction of HRA
data is necessary to have a deep understanding of the quality as
much as or more than the extraction of data from other disciplines.
It has been revealed that human errors are entangled with myriad
contextual, situational, and organizational factors, plus the fact that
there are different viewpoints and definitions of human errors and
performance shaping factors (PSFs). Under such complex relations
between human errors and PSFs and dissimilar definitions of hu-
man errors, it is difficult to convince that the data regarding human
reliability or behavioral/cognitive characteristics can always be
extracted consistently and reasonably in a way similar to the
extraction of equipment failure data. This means that the quality of
HRA data requires profound discussions for their preparation,
collection, analysis, and application.

In this paper, we present key considerations to generate quality
HRA data based on the experience of HRA data collection for the
HuREX framework. Since the HUREX framework was developed to
produce HRA data from training records using full-scope simula-
tors, over 50,000 data points were generated from multiple
different NPP systems. The considerations in this paper were
established from discussion of the results of statistical analysis
[18,19] and data comparison between HuREX and SACADA [20].
This paper assumes that HRA data will be used to provide empirical
evidence for the prediction of HEPs, PSF effects, and recovery failure
probabilities. The rest of this paper is organized as follows. Section
2 briefly introduces the HUREX framework and summarizes its data
extraction activities. Section 3 provides the derived significant is-
sues and recommendations to ensure meaningful HRA data. Section
4 appraises the previous data extraction activities against the
considerations. The final section discusses the conclusions of this
study and future research.

2. HuREX data extraction activity
2.1. HuREX framework

The HUREX framework was established to gather and analyze HRA
data from NPP simulators [13,19]. The data is affordable from any
kinds of experiments or training records from partial scale of simu-
lators or replicas of NPP control rooms. Ham and Park also partially
adopted the HUREX framework to analyze event investigation report
[21]. Fig. 1 briefly describes the data collection and analysis process.

Based on the characteristics of the system environment and the
scope of data collection, information gathering templates (IGTs) are
prepared, which include the data items or variables regarding crew
contexts and responses that are potentially collected from simu-
lator data including training records or experimental records. In the
data extraction project, the three kinds of IGTs were developed:
overview, response, and unsafe act. The overview IGT comprehends
the basic information from simulations and the overall character-
istics of scenarios, crews, and environments, e.g., simulation time,
procedure progression information, simulated accidents and
additional malfunctions, training level, and operating year of op-
erators. The response IGT was designed to obtain the success or
failure of task performance based on the procedures employed.
With this IGT, the time to initiate a procedural step, procedural
instructions, the types of operator tasks with related components
and systems, and human error modes are evaluated. The unsafe act
IGT includes detailed situational information when an operator
error is observed. The data items in the unsafe IGT represent the
following situational factors: familiarity and complexity of given
tasks, clearness or structural issues in procedure instructions,
communication, and recovery information.

Understand collection
environment and clarify
scope of data collection

Design IGTs (Information
Gathering Templates)

A 4
Collect raw data from the

simulators (e.g., video [
records, parameter logs,)

Identify erroneous behavior
from raw data

v

Collect contextual data <
based on IGTs

2. Data
Collection

Calculate performance time,
HEPs, recovery factors, and
PSF effects

3. Dat

Analysis

4. Data
Application

Fig. 1. Overall process of the HUREX framework (adapted from Ref. [18]).

Apply results to improve
HRA methods or operating
systems

During the raw data collection, video records, component
manipulation logs, plant parameter logs, scenario information, and
procedural path information are recorded (the first box of the data
collection phase). From the raw data obtained, the tasks that were
carried out by crews are selected and the erroneous behaviors are
identified among the tasks (the second box of the phase). The
erroneous behaviors in this analysis are determined when the
following two conditions are met: (1) the operator behaviors have
deviated from the procedure instructions and (2) the behaviors are
causally related with negative consequences such as inappropriate
equipment operation, inappropriate procedure transit, and inap-
propriate communication with external organizations. The tasks
including erroneous behaviors were considered as failed tasks
while the other tasks performed in the scenarios were seen as
successful behaviors. Lastly, the contextual information is extracted
based on the IGT forms developed in the previous phase (the third
box of the data collection phase). All gathered information is stored
in the database.

In the data analysis phase, quantitative information is estimated
via several statistical treatments. For example, estimates of human
performance time [22,23], HEPs [24], recovery failure probabilities
[25], and PSF impacts on HEP [18,19] can be produced based on the
obtained data. The human performance time was estimated by
basic statistics such as mean and standard deviation or probability
distribution fitting based on maximum likelihood estimation or
Bayesian inferences. The HEPs and recovery failure probabilities are
predicted using a Bayesian update with a non-informative Jeffrey
prior. The PSF impacts were derived using two kinds of logistic
regression analyses and stepwise variable selection.

Such quantitative information can be employed to update
existing HRA methods or develop a new kind of HRA method.
Analysis results also make it possible to identify areas of
improvement for operating systems such as procedures, training,
and interfaces. Therefore, during the last phase, the results of the
previous phase are interpreted and reported with considerations of
knowledge obtained from entire activities in the data extraction.



Y. Kim / Nuclear Engineering and Technology 52 (2020) 1697—1705 1699

Besides, those results are compared or synthesized with other
findings from empirical studies, expert opinions, or literature.

2.2. Summary of data extraction activity

Two separate HUREX data extraction projects have been per-
formed for obtaining HRA data, as compared in Table 1. The first
acquired the raw data from the full-scope simulators of a
Westinghouse-type three-loop reactor and an OPR-1000 (Opti-
mized Power Reactor 1000 MW). From 2 emergency scenarios and
12 abnormal scenarios, 223 simulations were observed. The prim-
itive tasks of the procedures that the crew followed were analyzed
from the observations. The tasks and human errors were distin-
guished according to the meaning and classification rules of human
errors defined in the HUREX framework and over 10,000 data
points were generated. In each data point, a binary state indicating
the failure or success of a primitive task is entailed with the task
types, error types, and the PSF levels for 26 variables. Table 2 shows
the list of data items pertaining to each data point. Kim et al. [18,24]
showed the results of statistical treatments using the data points.

The second data extraction project was the first project to
generate a large HRA database for digitalized control rooms. The
training simulator of an APR-1400 (Advanced Power Reactor
1400 MW) was employed to produce the raw data. A total of 168
simulations were recorded from 8 abnormal scenarios and 12
emergency scenarios in this project. The primitive tasks and oper-
ator performance of each task were analyzed like the first project,
and as a result over 44,000 data points were produced. The infor-
mation for the success/failure variable and over 50 contextual
variables is contained in a data point. The results of time analysis
using the obtained data were presented in Ref. [22], while HEP or
PSF effect estimates are expected to be given in further studies.

3. Considerations for HRA data quality

This section describes the considerations for generating high-
quality data based on the insights obtained from data extraction
activities. For ease of understanding, we simply classify the con-
siderations by the four data extraction processes: preparation, data
collection, data analysis, and data report/application. However, it is
important to note that these processes are performed iteratively,
and the considerations are also correlated with each other. Fig. 2
summarizes the relations between the considerations reported in
this paper. Some rounded boxes that overlap with each other imply
that the considerations are shared specific sub-issues with each
other. For example, abstraction levels of operating tasks can be seen
as a special aspect of consistent framework. Some remarkable re-
lations between considerations were also indicated by the arrows.

Table 1
Summary of data extraction projects.

3.1. Preparation

Consistent framework. A consistent framework with which to
collect data is the first important consideration. Consistency allows
us (1) to continuously accumulate HRA data, (2) to clearly compare
operator performance in different situations or environments, and
(3) to reasonably conjecture the differences between the extracted
data and data from other frameworks. The following decisions
should be consistently made:

- How to define the tasks or human actions to be evaluated (e.g.,
success or failure) from the obtained raw data;

- How to classify the types of human behaviors that were evalu-
ated as human errors or successful behaviors;

- How to determine the meaning of the PSFs or surrogate vari-
ables and their levels;

- How to designate an action changing the plant state that had
been influenced by a previous human error, either as a recovery
behavior, failed behavior, or successful behavior;

- How to store the inputted information, such as task perfor-
mance and PSF variables, into a database.

To consistently manage the above issues, the related definitions
and assumptions of the terminologies in the information to be
collected should be explicitly addressed and applied. The assump-
tions or rules to determine the classes or types of behaviors, human
errors, tasks, or contexts also need to be documented. When human
errors or tasks are classified or any value is assigned to a PSF var-
iable, a classification scheme that clearly distinguishes the classes
or states and comprehensively describes the raw data is useful to
generate insightful HRA data. In addition, definitions or classifica-
tions based on a theoretical basis of cognitive science or psychology
are required, because the cognitive processes of human operators
are analyzed during human reliability assessments. The US NRC
[26] and Kim et al. [24], have presented significant examples of
using cognitive literature for establishing such classification
schemes.

Abstraction levels of operating tasks. In view of task classifi-
cation, it is important to know that there exist different levels of
tasks in terms of abstraction hierarchy that explain the
goals—means relationships between entities [27]. Any task in a
work domain can be explained with available means for achieving
their goal. The means can also be seen as the other level of tasks
that should be completed with a lower level of tasks. For example,
Fig. 3 shows how tasks in NPP emergency situations can be
described with different levels. In this hierarchy, it can be said that
the higher levels of tasks can be achieved by the lower levels of
tasks. At the highest level are the goals of system control as
addressed by Corcoran et al. [28]. The second level tasks indicate
the HFEs that can be defined in probabilistic safety assessment
(PSA) scenarios or event trees, the third level tasks can be defined

1st extraction project

2nd extraction project

Reference plant
room)

2 emergency scenarios, 12 abnormal scenarios
Regular training records

Scenarios
Data source

Crew Licensed operator working in commercial operations
Five operators: shift supervisor (SS), reactor operator (RO), turbine operator

Operator roles in a crew

Westinghouse-type three loop plant and OPR-1000 (panel-based control

APR-1400 (computer-based control room)

12 emergency scenarios, 8 abnormal scenarios

Regular training records

Licensed operator working in commercial or trial operations
Five operators: SS, RO, TO, EO, and STA

(TO), electric operator (EO), and shift technical advisor (STA)

Number of raw records 223
Number of data points 10,768

168
44,585
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Table 2
Data items in 1st HUREX project (adapted from Ref. [18]).

Data items Definition

Success/failure

Task type

Error mode

Training experience

Simulation mode

Multiple initiating events

Failed system/component
Failed alarm/indicator
Leadership of SS

Cooperative attitude of BOs
Supervising level of STA
Independent checker

Procedure compliance

Overall communication strategy
Time pressure

Task familiarity

Contingency action

Type of state identification

Note or caution

Number of tasks

Number of manipulations
Instruction contents

Continuous action step
Confusing statement

Multiple constraints

Clarity of decision-making criteria
Description of object
Specification of manipulation means
Diagnostic information clarity

Whether a human error occurred or not in the task

A Task type defined in HUREX task taxonomy

Error of omission or error of commission

Inclusion of scenario in the regular training program

Type of simulated situation based on the reactor trip

Whether inputted scenarios are single or multiple

Existence of additional malfunctions in the system or component

Existence of masked or failed indicators or alarms

Leadership style of shift supervisor

Whether board operators showed active responses or communications during the simulations
Whether the STA actively checked the operations of the systems

Independent review during significant system controls

How the shift supervisor gave directions based on the procedures

Communication strategy that is frequently observed during the simulation

Urgency of the tasks determined based on the ongoing procedure and inputted scenario
Whether the task can be experienced during the power reduction or raise

Inclusion of the task in the contingency action part when the emergency procedure is used
Type of plant information required by the shift supervisor or obtained by the board operators
Inclusion of the task in the note of caution part of the procedure

The number of tasks in the ongoing step

The number of manipulations to be controlled during performance of the ongoing step

The content type to be instructed by the shift supervisor

Inclusion of the task in the continuous action step

Whether the procedure instruction related to the performed task is a negative form or includes an “or” condition
Existence of a parenthesized condition to be additionally checked in the procedure instruction
Description of clear criteria in the procedure instruction to determine system status (e.g., pressure > 79 kg/cm?)
Description of component ID to be manipulated in the procedure

Whether the procedure instruction provides a means to control a target system

Existence of indicator/alarm/display for diagnosis tasks

Detailed description
of context

/ Invisibility of
cognitive
behaviors

_‘Prevention of errors
in data collection

Abstraction levels

=
of operating tasks Interdisciplinary

""" »|approach

" analysis techniques
onsistent framewor y q

[ Statistical analysis

~ |Subjectivity of
_Ninterpretation

Bayesian approach

A 4
Data consolidation
Technique suitable f . _
tou:hgsznalygs . |Continuous data
R “ collection and “

/

improvement
isiinne

Fig. 2. A diagram depicting the relations between considerations.

by the training objective elements [12], and the fourth and fifth
levels are defined by the task taxonomy of HUREX [24] and the
cognitive processes in IDHEAS (Integrated Human Event Analysis
System) [29], respectively.

The meanings of tasks in a specific level (as well as their suc-
cesses and failures) are dissimilar from those in other levels.
Because human reliability or the effects of situational factors on it
can differ according to task level [30], data collectors should clearly
define the levels of tasks and discuss how the results from the
collected data can be interpreted after the analysis phase. The
abstraction hierarchy of tasks such as Fig. 3 will be useful in guiding
which tasks are to be selected for observation and analysis during
human reliability data generation. In many cases, a higher-level
task is achieved by carrying out multiple tasks in a lower level,
and so the observation of tasks in a low abstraction level for data
collection is beneficial to secure more data points. In addition, some

tasks in the highest levels can be achieved by entirely different sets
of low-level tasks; hence, it can be tricky to derive generic infor-
mation from the performance data of higher-level tasks. On the
other hand, in the data collection using the low-level task, we
observed the following issues. First, the success of an HFE-level task
does not always require the successful performance of all proce-
dural instructions. During the simulation observation, there are
some cases where an error in a detailed task made by an operator
did not affect the overall task performance in the higher levels of
tasks. Therefore, when performance or reliability in low-level tasks
should be associated with HFE-level reliability, it is important to
identify the tasks that are significant to the higher task levels.
Second, as many errors in low-level tasks can be implicitly or
explicitly recovered during all periods of high-level task perfor-
mance, a way to capture such recovery behaviors should be pre-
pared before the data collection phase. Lastly, it was observed that,
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Goal- High
dependent _ ,

Abstraction level (Means-ends

HMI-

dependent
Low

Reactivity Control
RCS Inventory control
RCS Pressure Control
Core Heat removal

Initiating feed-and-bleed operation
Delivery of a sufficient Sl flow
Tripping reactor

Cooling down RCS

Recognize loss of EW flow to train A
Secure ECW pump 1A

Ensure CCP 1A is in service

Verifies natural circulation

Checking discrete state - Verifying alarm occurrence
Checking discrete state - Verifying state of indicator
Manipulation - Simple (discrete) control

Notifying /requesting to MCR outside

Selecting, and identifying to sources of information
Selecting fadapting /developing the mental model
Making decision (judgment, strategies, plans)
Implementing action scripts

RCS Heat Removal

Containment isolation

Combustible gas control

Indirect radioactivity release
control

Fig. 3. Abstraction hierarchy of emergency tasks in NPPs (HMI: human-machine interface).

during training, operators tended to be somewhat negligent in low-
level tasks that were not directly influential on plant safety. Data
analysts thus need to consider the effects of these actions in
interpreting results.

Invisibility of cognitive behaviors. Because many HRA methods
have a goal to identify cognitive failure mechanisms, data items
that have been alluded to in cognitive science literature might be
included in data collection templates. However, capturing the
cognitive characteristics of human operators usually requires sub-
jective evaluation by data collectors. In fact, subjectivity can exist
during the whole process of data extraction. The subjective evalu-
ation should be carefully dealt with in any other process such as the
determination of PSF levels in order to reduce the variability of data
collection. But, it should be noted that identification of error
mechanisms demands deep knowledge and experience of cognitive
engineering and a consensus among experts may not be reached in
some cases. For example, to identify the cognitive mechanism
behind a wrong report in delivering plant information, a data col-
lector may suspect that it is caused by a misperception of the
parameter indicators while the other collector thinks that it is
related with a mistake in speech [31]. In this situation, the data
collectors cannot perfectly deduce the main reason of the reporting
error without interviewing the human operator. In addition, even if
the human operator can give information to the collectors about
the cognitive cause of the error, the information might sometimes
be weakly informative because an operator seldom makes an error
while consciously aware of the specific error type. During the
interview for identification of the root-cause of an observed human
error, the interviewee often infers a plausible cause, but do not
remember the exact cause of her/his error.

To input information on human cognitive characteristics, (1) a
specific guideline should be written, and/or (2) training or drills for

data collectors for the evaluation should be performed before the
collection phase. Alternatively, a taxonomy of PSFs or human errors
based on human behaviorism can be prepared, and objectively
observable data items can be used for data collection.

3.2. Data collection

Interdisciplinary approach to human error identification and
PSF rating. The data generation and analysis processes for HRA
basically belong to data science, which is a multidisciplinary ac-
tivity of computer science, statistics, and domain knowledge [32].
On the other hand, identifying human error information and sig-
nificant PSFs from raw data (such as simulation records or experi-
mental data) can also be seen as a sort of root-cause analysis or
human error investigation process, which requires multidisci-
plinary reviews in general [33]. Given that even HRA applications
are expected to be performed with multidisciplinary teams [34,35],
it is not surprising that HRA data should be collected with an
interdisciplinary approach. Based on the HuREX data collection
experience, the following areas of expertise are expected to
generally apply to HRA data: (1) safety/reliability engineering, (2)
cognitive science, (3) NPP system dynamics, (4) data analytics, and
(5) computer software development and database management.
For example, understanding the NPP system dynamics is essential
to evaluate whether certain operator behaviors are safe or unsafe.
The data collectors sometimes need to consult experienced plant
operators for comprehending the operator's behaviors. On the
other hand, the data should be collected with consideration of the
data structure. Because multiple experts can participate in the data
collection activity and it is required to merge data in different kinds
of forms (e.g., IGTs of HUREX), the relations between data forms
should be clearly determined and the database key or index should
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be consistently used.

Consideration of analysis techniques. Without anticipation of
the data analysis process, data collection can produce very limited
information to be analyzed. It is important to generate appropriate
data after a thorough review of which particular analytical methods
can be used and which contents or structures of data are needed for
the methods. For example, Kim et al. [5] alluded that generalized
linear models such as a logistic regression that could be employed
for estimating impacts of the PSFs require the contextual data items
not only when crews failed certain tasks but also when they suc-
cessfully performed them. Because, certain PSF states that appear to
have impacts on human failures are sometimes more closely
related with human success cases. Consequently, if the PSF data for
success cases are not gathered, the negative influences of those PSF
states are likely to be overestimated. Actually, the detailed
contextual data in the original HUREX framework were obtained
only when the human errors were observed. To statistically model
the quantitative relation between PSFs and HEPs, we additionally
generated detailed contextual information on the successful
behaviors.

Prevention of errors in data collection. Unlike industrial big
data such as manufacturing records and monitoring data of auto-
mated machinery, most HRA data is generated manually because
the selection of PSF levels or the identification of human errors still
requires entangled multidisciplinary knowledge. However, manual
data collection has a weakness in that data quality can be degraded
by human errors or violations by the collectors. To minimize bias or
flaws in manually collected data, the following strategies can be
employed: (1) human error identification by data collectors having
the least conflict of interest with the results, (2) peer-reviews of the
collected data, (3) establishment and application of explicit rules
for determining information regarding human errors and contexts,
and (4) development of support systems, such as a user interface-
based data generation system and a data integrity-verification
program.

Detailed description of context. Many data frameworks typi-
cally attempt to collect PSF information using items or variables
predetermined during the preparation phase. However, as
mentioned previously, the entire data extraction process is itera-
tive, or more specifically, data analysis sometimes requires the
gathering of additional PSF information. For example, in the course
of data analysis, a number of operator errors are observed at a
particular procedural step, which may reveal a structural problem
that the related data item was not properly defined in the prepa-
ration phase. In this situation, new PSF variables should be defined,
and data for the new variables should be collected. To facilitate the
identification of significant PSF variables, detailed contexts
including procedures, human-machine interfaces, and communi-
cations should be well documented during the collection phase.

3.3. Data analysis

Statistical analysis. Statistical techniques are essential to derive
significant information supporting HRA. For example, due to the
scarcity of HRA data, some researchers have attempted or proposed
to simply compare HEPs in a certain context with other HEPs in
another context for estimating the effects of the context [36—38].
However, to rigorously scrutinize the influence of contextual fac-
tors, it is important to statistically infer whether the difference
between the two HEPs is actually due to chance or due to certain
factors. It is therefore desirable to use developed statistical mea-
sures, such as confidence intervals or p-values, for testing hy-
potheses on the significance of factors [18].

Multivariate analysis techniques, which simultaneously
examine multiple variables, are more effective than univariate

techniques to compare PSF variables and then select the significant
variables among them. In the multivariate logistic regression in
Refs. [5,18], there were cases in which a particular factor that had
been proven as significant to human error by univariate analysis
was not selected as a significant factor in the multivariate analysis.
This was because the importance of the variable was comparatively
negligible, with other factors better explaining human reliability.

Bayesian approach. It is hard to say that collected HRA data are
perfectly precise, even when a range of systems or guidelines for
high quality data is implemented in collection activities. In addi-
tion, since data points in the tens or hundreds of thousands are
often required to observe a human error, it is often difficult to
ensure a sufficient amount of data. Along these lines, Bayesian
inference techniques are useful to derive meaningful insights when
data is insufficient and/or imprecise. In addition, Bayesian inference
can be used to propagate uncertainties of the estimates through
simulations or combine the results of data analysis with other kinds
of data sources, such as expert judgments and prior knowledge
from literature. Bayesian approaches have been widely employed in
PSA [39], and Kim et al. [19] also recently introduced a Bayesian
technique for estimating the relations between the human reli-
ability and the PSFs.

Technique suitable to the analysis purpose. An analysis tech-
nique that is able to produce results in conformity with the given
HRA application should be used. For example, most HRA methods
usually assess HFEs using intuitive models such as decision trees,
simple Bayesian networks, or multiplier tables for calculating their
HEPs with PSF states. These models are beneficial to support
practitioners in easily tracing their evaluation process and verifying
its reasonableness following human reliability assessment. To up-
date these existing HRA methods or develop new easy-to-use
techniques, quantitative information generated in the analysis
phase should not only have a high precision or prediction rate of
human reliability, but also be applicable to simple HEP quantifica-
tion models. For example, in practical HRA applications, complex
network-based algorithms, such as deep neural networks, may not
be attractive for modeling the relation between PSFs and human
reliability, recovery factors, or dependencies for existing HRA
strategies. Because the large-scale neural networks may not be easy
for the HRA practitioners to interpret, making it difficult to trace or
understand the results of their analyses, an additional technique
aiding interpretation of practitioners could be required [40].

3.4. Data report and application

Subjectivity of interpretation. Even though reducing subjec-
tivity is beneficial in producing transparent results, it is also noticed
that the interpretation of the analysis results often requires the
subjective opinions of data analysts. If any PSF variable is revealed
as significant to a type of human reliability, it is desirable to discuss
which specific reasons or features can affect the cognitive activities
of operators. In addition, how the obtained results can be gener-
alized to predict the effects of abstract PSFs on the HEPs can be also
deliberated. On the other hand, when some variables are correlated
with each other, it is critical to identify which variables are actually
meaningful. For example, for a set of abnormal situation data
collected from ‘A’ simulator and a set of emergency scenario data
gathered from ‘B’ simulator, the situation modes and simulator
designs are often correlated. In this case, data analyst judgment can
influence the interpretation. To derive factual conclusions from the
analysis, it is recommended that data analyzers should collaborate
with data collectors or carefully review the description of the
relevant situations (refer to the consideration, detailed description of
context.). Otherwise, more data should be collected to clearly
resolve this issue.
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The evaluation summary of the two HuREX projects on the basis of the considerations.

Considerations

1st HUREX project

2nd HuREX project

Consistent framework

Abstraction levels of
operating tasks

Invisibility of cognitive
behaviors

Interdisciplinary approach
to human error
identification and PSF
rating

Consideration of analysis
techniques

Prevention of errors in data
collection

Detailed description of
context
Statistical analysis

Bayesian approach

Technique suitable to the
analysis purpose

Subjectivity of
interpretation

Data consolidation

Continuous data collection
and system
improvement

- The procedure sentences related to human

- Several statistical criteria such as p-value,

- Bayesian inference based on Jeffrey's prior

- Logistics regression models that allow

- The estimates for PSF multipliers were

- This project provides the motivation for the

- The criteria discriminating success and failure were developed based on the definition of an unsafe act. The criteria were

consistently applied by educating the data collectors with several workshops.

- The task and error taxonomies were developed taking into account the procedure sentences, cognitive models, existing error types,

and simulator characteristics [24]. The classifications were implemented into the database management systems.

- Spreadsheet-based databases were developed and managed.
- For clarifying subtle issues in the

- The developed rules were elaborated and adjusted using the
characteristics of the APR1400 simulator (e.g., use of the computer-
based procedure).

identification or classification of human
errors and recovery actions, additional rules
were established.

- The procedure sentence-based primitive tasks were defined (the second level tasks from the bottom in the hierarchy of Fig. 3). This

task level is more concrete than the general HFE in HRA practice; hence, the model to link the results of the projects with the HRA
applications should be developed.

- The tasks distinguishable from audio-video records and procedure sentences were used.

- HRA experts, statisticians, cognitive scientist, software/database developer participated in this project.

- The plant operators and training instructors were regularly interviewed
for explaining plant dynamics.

- The data that can be used for average HEPs or recovery failure probabilities were mainly obtained (e.g., occurrences of success and

failure cases)

- To estimate PSF effects, the contextual information for both successes and failures were additionally generated.
- The human reliability data was generated by the 3rd party researchers.

- Database containing properties of procedure sentences were developed and used.

- Spreadsheet-based data (i.e., IGTs) were obtained and managed.

- Softwares to aid observe multiple videos simultaneously and to generate
IGT data along with procedure sentences were developed and employed.

- Software to check synthetic errors were developed and employed.

- Monthly workshops were held for peer-reviewing the data collection.

- The procedure sentences, significant conversations, and consequences
related to human errors were documented.

- Similar criteria used in the first project will be employed.

errors were documented.

confidence interval (for maximum likelihood

estimation), credible interval (for Bayesian

analysis), and Bayesian information criterion

were used to test the hypotheses or quantify

the parametric uncertainty.

- Bayesian inference is planned to be used for estimation of HEPs, recovery

was applied to the estimation of HEPs. failure probabilities, PSF effect, and so on.

- The PSF multipliers were also predicted by a

Bayesian inference [19].

- A logistic regression technique or decision tree algorithm can be used.
estimates that can represent the

multiplicative HRA models were used.

- The data analyzer and data collector -

collaborated with to understand the

statistical results.

The expert knowledge from a formal elicitation was obtained and is
combined with the multipliers in existing expected to be combined [42].

HRA methods [19].

- The HEPs from this project were compared

with those obtained from the Micro tasks
[41].

- The statistical results were compared with

the results of the second extraction project.
- Some improvements regarding procedure expressions were reported to

second extraction project. the operating company.

Data consolidation. No HRA data can be asserted as perfect.
Moreover, results derived from HRA data cannot be considered as
generic, because the operating culture in terms of national/orga-
nizational culture and system design including plant dynamics,
automation levels, and interface designs are too various. To derive
generic and robust insights from collected data, data comparison or
consolidation with results from other data sources or expert
judgments is highly important. To do so, it is necessary to record
the characteristics of the operational environment and the basic
assumptions of each data collection. For example, the HUREX data
obtained to date, as based on regular training records, contains
operator responses in 30—40 min simulations because of the
particular training policies of the operating company. In this case, it

is hard to accurately simulate situations regarding long-term
operation or recovery behaviors with longer time margins.

Continuous data collection and system improvement. The ul-
timate goal of HRA is to improve systems and reduce human errors
through quantification. We specify here that data collection is also
very useful for identifying system improvements. Data collection
offers another opportunity to find system problems that HRAs have
not easily captured from the observation of operator hesitations,
conversations, and non-verbal communications. If improvements
are repeatedly identified and the HRA method is continuously
updated through the continuous HRA data collection, system safety
will be more effectively secured.
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4. Evaluations of HUREX activities against considerations

The efforts in the two HuRex projects for handling the consid-
erations proposed in this paper are encapsulated in Table 3. Overall,
both data extraction projects utilized the HUREX to collect the data
with the consistent definitions and taxonomies. The crew errors
were assessed based on a detailed level of the task, and observable
behaviors were selected as the target evaluation actions of human
errors reflecting the invisibility of cognitive behavior. In the second
project, more detailed rules than that of the first project were used
to maintain consistency. In addition, more experts participated in
the second project, and periodical workshops and interviews were
conducted to verify data quality. The data collection for APR1400
control rooms has recently been completed and statistical analyses
and applications have not been carried out yet, but many statistical
results are expected in the future.

From the perspective of the lessons learned, the following issues
of the HUREX framework were found. First, the task level mainly
concerned in these projects is consistent but very concrete than the
HFE in many HRA applications. It is required to develop a model for
plausibly associating the results of extraction with the HRA appli-
cations. Second, for the effects of PSF, more data needs to be
collected to minimize subjectivity in interpretation. Third, some
values of HEPs from the HUREX were compared with the HEPs
estimated by other simulator experiments [41]. Likewise, the
various comparison efforts between the estimates should be
encouraged. In addition, how to synthesize the findings or data
from different data sources should be discussed in the future. Lastly,
ongoing data extraction needs to be continued to improve system
safety and derive general insights into human reliability. For
example, it can be attempted to compare domestic data with data
from various countries or compare the reliability for current
APR1400 operators with the reliability after the accumulation of
more operating experience.

5. Discussion and conclusion

It is clear that HRA data is of great importance in improving both
the quality of human error quantitative analysis as well as the
safety of human-machine systems. In this paper, we presented a
number of considerations for ensuring high-quality HRA data
following the lessons learned from the HuREX data extraction
experience. Because the lessons were acquired from only one data
collection framework, some recommendations may not exactly
align with other collection frameworks. Despite this, it is believed
that these results will guide researchers to consider important is-
sues in the process of extracting data. We plan to analyze the
recently collected HUREX data with the considerations conceived in
this study. The results will then be compared with the data from
HAMMLAB experiments, the SACADA database, and other
experiments.
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