• Title/Summary/Keyword: Analytical Stress Analysis

Search Result 874, Processing Time 0.028 seconds

A Mathematical Model of Return Flow outside the Surf Zone (쇄파대(碎波帶) 밖에서 return flow의 수학적(數學的) 모형(模型))

  • Lee, Jong Sup;Park, II Heum
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.2
    • /
    • pp.355-365
    • /
    • 1994
  • An analytical model of return flow is presented outside the surf zone. The governing equation is derived from the Navier-Stokes equation and the continuity. Each term of the governing equation is evaluated by the ordering analysis. Then the infinitesimal terms, i.e. the turbulent normal stress, the squared vertical velocity of water particle and the streaming velocity, are neglected. The driving forces of return flow are calculated using the linear wave theory for the shallow water approximation. Especially, the space derivative of local wave heights is described considering a shoaling coefficient. The vertical distribution of eddy viscosity is discussed to the customary types which are the constant, the linear function and the exponential function. Each coefficient of the eddy viscosities which sensitively affect the precision of solutions is uniquely decided from the additional boundary condition which the velocity becomes zero at the wave trough level. Also the boundary conditions at the bottom and the continuity relation are used in the integration of the governing equation. The theoretical solutions of present model are compared with the various experimental results. The solutions show a good agreement with the experimental results in the case of constant or exponential function type eddy viscosity.

  • PDF

Concept Development of Resilience (회복력 (Resilience) 개념 개발)

  • 김혜성
    • Journal of Korean Academy of Nursing
    • /
    • v.28 no.2
    • /
    • pp.403-413
    • /
    • 1998
  • The Resilience is described as the personal capacity which brings psychosocial comeback. The role of nursing is to do its best to rehabilitate patients and to explore the individual in order to promote patients psychosocial change. However, as the current nursing is heavily physical nursing oriented, the identity of the nursing would be lost. Therefore this researcher reviewed if the concept of resilience can be applied to the nursing after examing the concept of resilience by Documents and Fieldwork. The methodology of this research is Hybrid Model developed by Schwartz-Barcott and Kim for the concept development and analysis. The process and procedure consist of The Theoretical Phase, The Fieldwork Phase and The Final Analytical Phase in accodance with the Hybrid Model. The followings the summary of the Research. 1. The Concept of Resilience Finally Analyzed by Documents and Fieldwork (1) The Redefinition of Resilience The resilience is the latent psychosocial capacity which minimize the negative emotion and promote the adaptation under adversity. Resilience appears as cognitive, emotional and behavioral response in the course of changing from negative response to positive response through the interaction of the individual and the enviroments in a given time. Resilience changes and decreases according to time and situation and it can be nurtured. Resilience is the higher concept including hardiness, sense of coherence and self-strength which maintain the health under stress. (2) The Attribute of Resilience The attribute of resilience was devided into psychological and social dimension. In psychological attributes, there are admittion of reality of situation, denial of negative emotion, desire to live, responsibility, confidence, courage, hope, pursuit of positive meaning, identification and pursuit of goal, self-esteem, reception, spontaneity, planning, positiveness, will power, flexibility and creativity. In social attributes, there are a sense of belonging, perception of social support and active social relations. (3) The Process of Resilience There are 4 resilience phases which were the process minimizing the possibility of the negative chain reactions under adversity, the process minimizing the negative emotion under adversity, the process gaining the desire to live and the process exposing the active social relations. 2. The Application Possibility of Resilience Concept to Nursing The resilience concept is the psychosocial capacity with which an individual manages adversity. As many nursing scientists have developed nursing theory based on this capacity and the identification of nursing has been established in this field, resilience is not the new conception in nursing. However, since resilience appears in the attributes related with the resilience process concretely, it would help a lot when nurses execute psychosocial nursing.

  • PDF

Development of a Method of Cybersickness Evaluation with the Use of 128-Channel Electroencephalography (128 채널 뇌파를 이용한 사이버멀미 평가법 개발)

  • Han, Dong-Uk;Lee, Dong-Hyun;Ji, Kyoung-Ha;Ahn, Bong-Yeong;Lim, Hyun-Kyoon
    • Science of Emotion and Sensibility
    • /
    • v.22 no.3
    • /
    • pp.3-20
    • /
    • 2019
  • With advancements in technology of virtual reality, it is used for various purposes in many fields such as medical care and healthcare, but as the same time there are also increasing reports of nausea, eye fatigue, dizziness, and headache from users. These symptoms of motion sickness are referred to as cybersickness, and various researches are under way to solve the cybersickness problem because it can cause inconvenience to the user and cause adverse effects such as discomfort or stress. However, there is no official standard for the causes and solutions of cybersickness at present. This is also related to the absence of tools to quantitatively measure the cybersickness. In order to overcome these limitations, this study proposed quantitative and objective cybersickness evaluation method. We measured 128-channel EEG waves from ten participants experiencing visually stimulated virtual reality. We calculated the relative power of delta and alpha in 11 regions (left, middle, right frontal, parietal, occipital and left, right temporal lobe). Multiple regression models were obtained in a stepwise manner with the motion sickness susceptibility questionnaire (MSSQ) scores indicating the susceptibility of the subject to the motion sickness. A multiple regression model with the highest under the area ROC curve (AUC) was derived. In the multiple regression model derived from this study, it was possible to distinguish cybersickness by accuracy of 95.1% with 11 explanatory variables (PD.MF, PD.LP, PD.MP, PD.RP, PD.MO, PA.LF, PA.MF, PA.RF, PA.LP, PA.RP, PA.MO). In summary, in this study, objective response to cybersickness was confirmed through 128 channels of EEG. The analysis results showed that there was a clearly distinguished reaction at a specific part of the brain. Using the results and analytical methods of this study, it is expected that it will be useful for the future studies related to the cybersickness.

A Study on the Horizontal Drainage Method Using Plastic Drain Board (플라스틱 배수재를 이용한 수평배수공법에 관한 연구)

  • 황정규;김홍택;김석열;강인규;김승욱
    • Geotechnical Engineering
    • /
    • v.14 no.6
    • /
    • pp.93-112
    • /
    • 1998
  • In the present study, 2-D consolidation theory of the dredged clay by means of the horizontal drain method is proposed. The horizontal drain method to install the drains such as plastic drain board within the dredged clay is a soil improvement method to accelerate the consolidation by expelling pore water in the vertical direction along the horizontal drains. Based on the finite strain consolidation theory by Gibson et al., the partial differential equation of 2-D consolidation due to the horizontal drain is derived. The consolidation due to the horizontal drain can be illustrated from combined self-weight consolidation effect and consolidation effect by horizontal drains. For the prediction of consolidation settlement and degree of consolidation numerical analysis is suggested on the basis of Dufort-Frankel finite differential algorithm. Also, the analytical procedures proposed in this study are verified by the model tests, and the predictions of the consolidation settlement and degree of consolidation are compared with the results obtained from the tests for the dredged clay gathering at Siwha site in Ansan, Korea. For the predictions, the relationship void ratio vs effective stress and the relationship permeability vs void ratio of the dredged clay are obtained from the odometer tests. Additionally, the parametric study for consolidation settlement by variations of design parameters related with horizontal drain method is carried out. Based on the results of the parametric study, design .charts for the preliminary design are also proposed.

  • PDF

Nonlinear Analysis of RC Beams under Cyclic Loading Based on Moment-Curvature Relationship (모멘트-곡률 관계에 기초한 반복하중을 받는 철근콘크리트 보의 비선형 해석)

  • 곽효경;김선필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.245-256
    • /
    • 2000
  • A moment-curvature relationship to simulate the behavior of reinforced concrete beam under cyclic loading is introduced. Unlike previous moment-curvature models and the layered section approach, the proposed model takes into consideration the bond-slip effect by using monotonic moment-curvature relationship constructed on the basis of the bond-slip relation and corresponding equilibrium equation at each nodal point. In addition, the use of curved unloading and reloading branches inferred from the stress-strain relation of steel gives more exact numerical result. The advantages of the proposed model, comparing to layered section approach, may be on the reduction in calculation time and memory space in case of its application to large structures. The modification of the moment-curvature relation to reflect the fixed-end rotation and pinching effect is also introduced. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

  • PDF

Numerical Analysis of the Hydraulic Characteristics of a Boundary Layer Streaming over Beach Cusps Surf-Zone Using LES and One Equation Dynamic Smagorinsky Turbulence Model (LES와 One Equation Dynamic Smagorinsky 난류모형을 이용한 Beach Cusps 쇄파역에서의 경계층 Streaming 수치해석)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.1
    • /
    • pp.55-68
    • /
    • 2020
  • In order to investigate the hydraulic characteristics of a boundary layer streaming over the beach cusps appeared in swells prevailing mild seas, we numerically simulated the shoaling process of Edge waves over the beach cusp. Synchronous Edge waves known to sustain the beach cusps could successfully be duplicated by generating two obliquely colliding Edge waves in front of beach cusps. The amplitude AB and length LB of Beach Cusp were elected to be 1.25 m and 18 m, respectively based on the measured data along the Mang-Bang beach. Numerical results show that boundary layer streaming was formed at every phase of shoaling process without exception, and the maximum boundary layer streaming was observed to occur at the crest of sand bar. In RUN 1 where the shortest waves were deployed, the maximum boundary layer streaming was observed to be around 0.32 m/s, which far exceeds the amplitude of free stream by two times. It is also noted that the maximum boundary layer streaming mentioned above greatly differs from the analytical solution by Longuet-Higgins (1957) based on wave Reynolds stress. In doing so, we also identify the recovery procedure of natural beaches in swells prevailing mild seas, which can be summarized such as: as the infra-gravity waves formed in swells by the resonance wave-wave interaction arrives near the breaking line, the sediments ascending near the free surface by the Phase II waves orbital motion were carried toward the pinnacle of foreshore by the shoreward flow commenced at the steep front of breaking waves, and were deposited near the pinnacle of foreshore due to the infiltration.

Bond Behavior of Epoxy Coated Reinforcement Using Direct Pull-out Test and Beam-End Test (직접인발시험과 보-단부 시험을 이용한 에폭시 도막 철근의 부착특성)

  • Kim, Jee-Sang;Kang, Won Hyeak
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.3
    • /
    • pp.271-278
    • /
    • 2019
  • The corrosion of reinforcements embedded in concrete causes severe deterioration in reinforced concrete structures. As a countermeasure, epoxy coated reinforcements are used to prevent corrosion of reinforcements. When epoxy coated bars are used, the resistance of corrosion is excellent, but epoxy coating on the bars have a disadvantage of reduction in bond capacity comparing to that of normal bars. Therefore, it is necessary to confirm the bond performance of epoxy coated reinforcements through experimental and analytical methods. Bond behaviors of epoxy coated bars for various diameters of 13 and 19mm and thicknesses of cover concrete of 3 types(ratio of cover to bar diameter) are examined. As the diameters of the epoxy coated bars increase, the difference of bond strength between epoxy coated and uncoated bars also increases and damage patterns showed pull out failure. In addition, finite element analysis was performed based on the bond-slip relationship obtained by direct pullout test and compared with the flexural test results. It is considered that flexural member test is more useful than pullout test for simulating the behavior of actual structure.

A Analytical Study on Seismic Performance of Stainless Water Tank using Lead Rubber Bearing (납고무받침을 이용한 스테인리스 물탱크 내진성능에 관한 해석적 연구)

  • Kim, Hu-Seung;Oh, Ju;Jung, Hie-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.230-236
    • /
    • 2018
  • Earthquakes over 5.0 on the Richter scale have recently occurred in Korea, which has led to interest in the seismic safety of structures. If a water storage facility is damaged by an earthquake, the water could leak, and the insufficient water would make fire suppression difficult. Therefore, a water storage facility should satisfy safety requirements for earthquakes. In this study, the seismic performance of a water tank was improved by installing a lead rubber bearing between the foundation and the tank. It designed the lead rubber bearing available to the existed concrete foundation. ANSYS was used for modeling to consider the interaction between the fluid and structure of the tank and the hydrostatic and hydrodynamic pressure using four seismic waves. In the case of hydrostatic pressure at 2.5 water level, full level, the same stress appeared irrespective of whether the seismic isolation was installed. When hydrostatic pressure and hydrodynamic pressures are applied at the same time, the seismic-isolated water tank showed less seismic force, and the damping ratio was lower than that of general seismic isolation. This occurred because the weight of the water tank is much smaller than the stiffness of the seismic isolation. The result is expected to be used for further research on seismic capacity evaluation for water tanks.

A Study on the Flow Analysis for KP505 Propeller Open Water Test (유체기기의 표면 금속코팅 적용에 따른 구조건전성 평가)

  • Lee, Han-Seop;Lim, Byung-Chul;Kim, Min-Tae;Lee, Beom-Soon;Park, Sang-Heup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.23-28
    • /
    • 2019
  • The structural integrity of a surface metal coating was evaluated through numerical results to improve the efficiency and reduce the damage caused by cavitation in ships and marine plants. The goal was to ensure structural strength and performance, even if the thickness of the wing is reduced to reduce the weight of the material and surface coating. Analytical methods were used for four models: a non-coating model, one with the same thickness after coating, one with a thickness reduction of 3% after coating, and one with thickness reduction of 5% after coating. With a thickness reduction of 5% after coating, the stress was increased to 12%, and the safety factor was 0.99%, so the structural integrity was insufficient. However, a better material or a thicker coating could allow a sufficient safety factor to be secured. The structural integrity was improved by the coating, and even when the weight was reduced up to 5%, the structural integrity could be sufficiently secured due to the coating effect.

Numerical Study on Seismic Performance Evaluation of Circular Reinforced Concrete Piers Confined by Steel Plate (강판으로 보강된 원형철근콘크리트교각의 내진성능 평가에 관한 해석적 연구)

  • Lee, Myung-Jin;Park, Jong-Sup
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.116-122
    • /
    • 2021
  • This study quantitatively evaluated the performance improvement of a circular reinforced concrete pier under dynamic load with strengthening using a steel plate. Various three-dimensional elements were applied using the finite element program ABAQUS. The analytical parameters included the ratios of the steel cover length to the pier's total height and the ratios of the steel cover thickness to the pier diameter for inelastic-nonlinear analysis. The lower part of the pier had fixed boundary conditions, and lateral repetitive loads were applied at the top of the pier. The pier was investigated to evaluate the dynamic performance based on the load-displacement curve, stress-strain curve, ductility, energy absorption capability, and energy ratio. The yield and ultimate loads of piers with steel covers increased by 3.76 times, and the energy absorption capability increased by 4 times due to the confinement effects caused by the steel plate. A plastic hinge part of the column with a steel plate improved the ductility, and the thicker the steel plate was, the greater the energy absorption capacity. This study shows that the reinforced pier should be improved in terms of the seismic performance.