DOI QR코드

DOI QR Code

A Analytical Study on Seismic Performance of Stainless Water Tank using Lead Rubber Bearing

납고무받침을 이용한 스테인리스 물탱크 내진성능에 관한 해석적 연구

  • Kim, Hu-Seung (Department of Civil Engineering, University of Seoul) ;
  • Oh, Ju (Korean Intellectual Property Office) ;
  • Jung, Hie-Young (Department of Civil Engineering, University of Seoul)
  • Received : 2018.08.07
  • Accepted : 2018.11.02
  • Published : 2018.11.30

Abstract

Earthquakes over 5.0 on the Richter scale have recently occurred in Korea, which has led to interest in the seismic safety of structures. If a water storage facility is damaged by an earthquake, the water could leak, and the insufficient water would make fire suppression difficult. Therefore, a water storage facility should satisfy safety requirements for earthquakes. In this study, the seismic performance of a water tank was improved by installing a lead rubber bearing between the foundation and the tank. It designed the lead rubber bearing available to the existed concrete foundation. ANSYS was used for modeling to consider the interaction between the fluid and structure of the tank and the hydrostatic and hydrodynamic pressure using four seismic waves. In the case of hydrostatic pressure at 2.5 water level, full level, the same stress appeared irrespective of whether the seismic isolation was installed. When hydrostatic pressure and hydrodynamic pressures are applied at the same time, the seismic-isolated water tank showed less seismic force, and the damping ratio was lower than that of general seismic isolation. This occurred because the weight of the water tank is much smaller than the stiffness of the seismic isolation. The result is expected to be used for further research on seismic capacity evaluation for water tanks.

최근 국내에서도 규모 5.0 이상의 지진이 발생하여 구조물의 내진 안전성에 대한 관심이 증가하고 있다. 특히, 물을 저장하는 시설은 지진에 의해 손상 및 파손이 될 경우, 누수로 식수 및 용수가 부족하게 될 뿐만 아니라 화재 진압의 어려움이 야기되므로 지진에 대한 안전성을 만족하여야 한다. 본 연구에서는 기초와 탱크사이에 납고무받침을 고려하여 지진에 대한 물탱크의 내진성능을 향상시키고자 한다. 이를 위해 기존 콘크리트 기초에 설치 가능하도록 납고무받침을 설계하였다. 물탱크에 대하여 유체-구조물 상호작용을 고려하기 위하여 ANSYS를 활용하여 모델링을 수행하였으며 정수압과 4개의 지진파를 이용한 동수압을 고려하였다. 만수위 2.5m의 정수압이 작용하는 경우에 대하여 정적 해석을 수행한 결과, 면진 적용여부와 상관없이 동일한 응력이 발생하였다. 정수압과 동수압을 동시에 고려했을 때, 면진 물탱크는 전반적으로 지진력 감소가 이루어졌지만 일반적인 구조면진과 비교했을 때 감쇠율이 다소 낮은 것으로 나타났다. 이는 물탱크 중량이 면진 강성보다 매우 작아서 나타난 결과로 판단되며, 향후 물탱크 내진성능 평가에 기초 자료로 활용될 것으로 기대된다.

Keywords

SHGSCZ_2018_v19n11_230_f0001.png 이미지

Fig. 1. LRB Isolaton System and Bi-Linear Model (a) Isolation System (b) Bi-Linear Model

SHGSCZ_2018_v19n11_230_f0002.png 이미지

Fig. 2. Artificial earthquake(a) KRBDC 0.154g (b) Hachinohe 0.231g(c) Northridge 0.341g (d) El-Centro 0.348g

SHGSCZ_2018_v19n11_230_f0003.png 이미지

Fig. 3. Finite Element Model(a) Full Model (b) Fluid-Structure Model(1)(c) Fluid-Structure Model(2) (d) Shell-Beam Model

SHGSCZ_2018_v19n11_230_f0004.png 이미지

Fig. 5. Analysis Results of Dynamic Pressure(kN/m2)

SHGSCZ_2018_v19n11_230_f0005.png 이미지

Fig. 4. Analysis Results of Hydrostatic Pressure(Pa)(a) Non-Isolated (b) LRB

Table 1. Specimens of Design Condition

SHGSCZ_2018_v19n11_230_t0001.png 이미지

Table 2. Analysis Results of Max. Dynamic Pressure (kN/m2)

SHGSCZ_2018_v19n11_230_t0002.png 이미지

References

  1. Ministry of Public Safety and Security, "Seismic Design of Fire Protection System", Korea, 2015.
  2. B. -J. Son, S. -Y. Lee, "Finite Element Stress Analysis of Large Sized Rectangular Water Tank Structures Made of Stainless Steel Materials", J. Korean Soc. Adv. Comp. Struc., Vol.6, No.2, pp. 85-90, 2015 DOI: http://dx.doi.org/10.11004/kosacs.2015.6.2.085
  3. J. H. Yun, T. W. Kang, H. I. Yang, J. -S. Jeon, "Earthquake-Induced Wall Pressure Response Analysis of a Square Steel Liquid Storage Tank", EESK J Earthquake Eng, Vol.22, No.5, pp. 261-269, 2018 DOI: http://doi.org/10.5000/EESK.2018.22.5.261
  4. S. M. Lee, Y. -J. Lee, "Seismic Fragility Assessment of Liquid Storage Tanks by Finite Element Reliability Analysis", Journal of the Korea Academia-Industrial cooperation Society, Vol.18, No.4, pp. 718-725, 2017 DOI: http://doi.org/10.5762/KAIS.2017.18.4.718
  5. Korea Road & Transportation Association(In Korea), "Korean Road Bridge Design Code", 2010.
  6. G.W. Housner, "The dynamic behavior of water tanks", Bulletin of the seismological society of America, Vol. 53, No.2, pp.381-387, 1963.
  7. D. B. Bae, J. H. Park, and C. K. Oh, "Comparison of Design Standards for Seismic Design of Steel Liquid Storage Tanks", Journal of Korean Society of Steel Construction, Vol.28, No.3, pp.195-202, 2016. DOI: http://dx.doi.org/10.7781/kjoss.2016.28.3.195
  8. ANSYS Mechanical Ver. 17.1, ANSYS Inc., 2016. https://www.ansys.com
  9. Japan Reinforced Plastics Society, "Structural design calculations of FRP water tank", 1996.