• Title/Summary/Keyword: Analytic

Search Result 6,000, Processing Time 0.029 seconds

Convolution product and generalized analytic Fourier-Feynman transforms

  • Chang, Seung-Jun
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.707-723
    • /
    • 1996
  • We first define the concept of the generalized analytic Fourier-Feynman transforms of a class of functionals on function space induced by a generalized Brownian motion process and study of functionals which plays on important role in physical problem of the form $ F(x) = {\int^{T}_{0} f(t, x(t))dt} $ where f is a complex-valued function on $[0, T] \times R$. We next show that the generalized analytic Fourier-Feynman transform of the convolution product is a product of generalized analytic Fourier-Feynman transform of functionals on functin space.

  • PDF

MAXIMAL DOMAINS OF SOLUTIONS FOR ANALYTIC QUASILINEAR DIFFERENTIAL EQUATIONS OF FIRST ORDER

  • Han, Chong-Kyu;Kim, Taejung
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1171-1184
    • /
    • 2022
  • We study the real-analytic continuation of local real-analytic solutions to the Cauchy problems of quasi-linear partial differential equations of first order for a scalar function. By making use of the first integrals of the characteristic vector field and the implicit function theorem we determine the maximal domain of the analytic extension of a local solution as a single-valued function. We present some examples including the scalar conservation laws that admit global first integrals so that our method is applicable.

ANALYTIC CONTINUATION OF GENERALIZED NON-HOLOMORPHIC EISENSTEIN SERIES

  • Lim, Sung-Geun
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.285-292
    • /
    • 2013
  • B. C. Berndt computed the Fourier series of a class of generalized Eisenstein series, which gives an analytic continuation to the generalized Eisenstein series. In this paper, continuing his work, we consider generalized non-holomorphic Eisenstein series and give an analytic continuation to the $s$-plane.

ANALYTIC SOLUTIONS OF THE CAUCHY PROBLEM FOR THE GENERALIZED TWO-COMPONENT HUNTER-SAXTON SYSTEM

  • Moon, Byungsoo
    • Honam Mathematical Journal
    • /
    • v.37 no.1
    • /
    • pp.99-112
    • /
    • 2015
  • In this paper we consider the periodic Cauchy problem for the generalized two-component Hunter-Saxton system with analytic initial data and we prove a Cauchy-Kowalevski type theorem for the generalized two-component Hunter-Saxton system, that establishes the existence and uniqueness of real analytic solutions.

SOME REMARKS ON THE SUBORDINATION PRINCIPLE FOR ANALYTIC FUNCTIONS CONCERNED WITH ROGOSINSKI'S LEMMA

  • Akyel, Tugba
    • Korean Journal of Mathematics
    • /
    • v.29 no.2
    • /
    • pp.293-304
    • /
    • 2021
  • In this paper, we present a Schwarz lemma at the boundary for analytic functions at the unit disc, which generalizes classical Schwarz lemma for bounded analytic functions. For new inequalities, the results of Rogosinski's lemma, Subordination principle and Jack's lemma were used.

MULTIPLE Lp ANALYTIC GENERALIZED FOURIER-FEYNMAN TRANSFORM ON A FRESNEL TYPE CLASS

  • Chang, Seung Jun;Lee, Il Yong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.1
    • /
    • pp.79-99
    • /
    • 2006
  • In this paper, we define a class of functional defined on a very general function space $C_{a,b}[0,T]$ like a Fresnel class of an abstract Wiener space. We then define the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product of functionals on function space $C_{a,b}[0,T]$. Finally, we establish some relationships between the multiple $L_p$ analytic generalized Fourier-Feynman transform and the generalized convolution product for functionals in $\mathcal{F}(C_{a,b}[0,T])$.

  • PDF

A FUBINI THEOREM FOR GENERALIZED ANALYTIC FEYNMAN INTEGRALS AND FOURIER-FEYNMAN TRANSFORMS ON FUNCTION SPACE

  • Chang, Seung-Jun;Lee, Il-Yong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.40 no.3
    • /
    • pp.437-456
    • /
    • 2003
  • In this paper we use a generalized Brownian motion process to define a generalized analytic Feynman integral. We then establish a Fubini theorem for the function space integral and generalized analytic Feynman integral of a functional F belonging to Banach algebra $S(L^2_{a,b}[0,T])$ and we proceed to obtain several integration formulas. Finally, we use this Fubini theorem to obtain several Feynman integration formulas involving analytic generalized Fourier-Feynman transforms. These results subsume similar known results obtained by Huffman, Skoug and Storvick for the standard Wiener process.

Analysis of Flow Field in Cavity Using Finite Analytic Method (F.A.M.을 이용한 공동 내부의 유동해석)

  • 박명규;정정환;김동진
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.46-53
    • /
    • 1991
  • In the present study, Navier-Stokes equation is numerically solved by use of a Finite analytic method to obtain the 2-dimensional flow field in the square cavity. The basic idea of F.A.M. is the incorporation of local analytic solutions in the numerical solution of linear or non-linear partial differential equations. In the F.A.M., the total problem is subdivided into a number of all elements. The local analytic solution is obtained for the small element in which the governing equation, if non-linear, to be linearized. The local analytic solutions are then expressed in algebraic form and are overlapped to cover the entire region of the problem. The assembly of these local analytic solutions, which still preserve the overall nonlinearity of the governing equations, results in a system of linear algebraic equations. The system of algebraic equations is then solved to provide the numerical solutions of the total problem. The computed flow field shows the same characteristics to physical concept of flow phenomena.

  • PDF