HÖLDER ESTIMATES FOR $\bar{\partial}$ IN ANALYTIC POLYHEDRA

HONG RAE CHO

ABSTRACT. We consider Hölder estimates for $\bar{\partial}$ in analytic polyhedra. In the case of dimension 2, it preserves exact Hölder regularity, and it maps bounded (0, 1)-forms into BMO with respect to volume measure.

1. Introduction and statement of results

A bounded domain $\Omega \subset \mathbb{C}^n$ is an analytic polyhedron with defining functions ϕ_i if

$$\Omega = \{ z \in \mathbb{C}^n; \ |\phi_j(z)| < 1, j = 1, \dots, N \},$$

where the defining functions ϕ_j are holomorphic in some neighborhood $\widetilde{\Omega}$ of $\overline{\Omega}$. For a multiindex $I\subset\{1,\ldots,N\}$ we let $\sigma_I=\{z\in\overline{\Omega};\ |\phi_j(z)|=1,\ j\in I\}$. We say that Ω is non-degenerate if $\partial\phi_{I_1}\wedge\cdots\wedge\partial\phi_{I_k}\neq 0$ on σ_I for every multiindex I. In particular, this means that no more than n of the functions ϕ_j can have modulii 1 at the same point. The polydisk D^n in \mathbb{C}^n is a non-degenerate analytic polyhedron with n defining functions. It is easy to see that n being non-degenerate is equivalent to that n is locally biholomorphic to a part of the polydisk n. In [2], Andersson provided a weighted variant of the solution operator for n in any analytic polyhedron, and he obtained n estimates for n. In this paper we consider Hölder estimates for n in analytic polyhedra.

Received October 17, 2001.

²⁰⁰⁰ Mathematics Subject Classification: 32A26.

Key words and phrases: Hölder estimates for $\overline{\partial}$, analytic polyhedron.

This work was supported by grant No. R01-2000-00001 from the Basic Research Program of the Korea Science & Engineering Foundation.

THEOREM 1.1. Let $\Omega \subset \mathbb{C}^n$ be a non-degenerate analytic polyhedron. Let $0 < \alpha < 1$. Then there is an integral solution operator $S: C_{0,1}(\overline{\Omega}) \to C(\Omega)$ for $\overline{\partial}$ such that

$$|Sf|_{\Lambda_{\alpha-\epsilon}(\Omega)} \leq C_{\alpha,\epsilon}|f|_{\Lambda_{\alpha}(\Omega)} \quad \text{for all f with $\overline{\partial} f = 0$ and $0 < \epsilon < \alpha$.}$$

THEOREM 1.2. If n=2 in Theorem 1, then for $0 < \alpha < 1$ we have

- (i) $|Sf|_{\Lambda_{\alpha}(\Omega)} \le C_{\alpha}|f|_{\Lambda_{\alpha}(\Omega)}$ for all f with $\overline{\partial} f = 0$,
- (ii) $||Sf||_{BMO(\Omega)} \leq C|f|_{L^{\infty}(\Omega)}$.

In [5], Henkin and Sergeev proved uniform estimates for $\overline{\partial}$ in the strictly pseudoconvex polyhedron. Range-Siu [8] proved Hölder estimates for the $\bar{\partial}$ -equation on piecewise smooth strictly pseudoconvex domains. Menini [6] proved L^p estimates for $\bar{\partial}$ on piecewise smooth strictly pseudoconvex domains.

From Theorems 1.1 and 1.2 we can see that for n > 2 there is a small loss $\epsilon > 0$ of regularity as in the piecewise smooth strictly pseudoconvex case ([8]). It seems that the loss cannot be removed by our method. However, if n = 2, we can get the optimal result.

2. Construction of the solution operator for $\overline{\partial}$

Let $\phi_{j}^{k}(\zeta, z)$ be holomorphic functions in $\widetilde{\Omega} \times \widetilde{\Omega}$ such that

$$\phi_j(\zeta) - \phi_j(z) = \sum_{k=1}^n \phi_j^k(\zeta, z)(\zeta_k - z_k),$$

 ϕ_j^k are so-called Hefer functions to ϕ_j , and define the (1,0)-forms $\Phi_j = \sum_{k=1}^n \phi_j^k d\zeta_k$. Let $\beta(\zeta, z) = |\zeta - z|^2$. For any r > 0 we can define a kernel (2.1)

$$K^{r}(\zeta, z) = \sum_{\nu=1}^{n} C_{\nu} \sum_{|I|=n-\nu}^{\prime} \frac{\partial_{\zeta} \beta \wedge (\overline{\partial}_{\zeta} \partial_{\zeta} \beta)^{n-1}}{\beta^{\nu}} \prod_{j \notin I} \left(\frac{1 - |\phi_{j}(\zeta)|^{2}}{1 - \overline{\phi_{j}(\zeta)} \phi_{j}(z)} \right)^{r} \\ \bigwedge_{j \in I} \frac{-r(1 - |\phi_{j}(\zeta)|^{2})^{r-1}}{(1 - \overline{\phi_{j}(\zeta)} \phi_{j}(z))^{r+1}} \overline{\partial \phi_{j}} \wedge \Phi_{j},$$

which induces a solution operator

(2.2)
$$S^{r}f(z) = \int_{\zeta \in \Omega} f \wedge K^{r}(\zeta, z), \quad z \in \Omega$$

such that $\overline{\partial}(S^r f) = f$ for a $\overline{\partial}$ -closed (0,1)-form f (see [2]).

THEOREM 2.1. Let $r \to 0$ in (2.2) and then we obtain the solution operator for $\overline{\partial}$

$$Sf(z) = C \int_{\zeta \in \Omega} f(\zeta) \wedge \frac{\omega_0(\zeta, z)}{\beta^n} + \sum_{\nu=1}^{n-1} C_{\nu} \sum_{|I|=n-\nu}' \int_{\zeta \in \sigma_I} f(\zeta) \wedge \frac{\omega_I(\zeta, z)}{\beta^{\nu} \prod_{j \in I} (\phi_j(\zeta) - \phi_j(z))}, \quad z \in \Omega,$$

where ω_I are smooth $(n, \nu - 1)$ -forms such that $\omega_I(\zeta, z) = \mathcal{O}(|\zeta - z|)$.

PROOF. We consider a fixed term $K_{I,\nu}^r$ in (2.1). Let $1 \leq \nu < n$. Without loss of generality we may assume that $I = (1, \ldots, n - \nu)$. Let ζ^0 be a fixed point on $\overline{\Omega}$. We may assume that $|\phi_j(\zeta^0)| = 1$ for say $j \leq l$ and $|\phi_j(\zeta^0)| < 1$ for $l < j \leq n - \nu$. Then, by the assumption on Ω , $\partial \phi_1 \wedge \cdots \wedge \partial \phi_l \neq 0$ at ζ^0 . Therefore, we can choose a local holomorphic coordinate system ξ at ζ^0 such that $\xi_j = \phi_j$ for $1 \leq j \leq l$. There is a smooth (n, n - l - 1)-form ω such that $\omega = \mathcal{O}(|\zeta - z|)$ and

$$\int_{\Omega} \chi \partial_{\zeta} \beta \wedge (\overline{\partial}_{\zeta} \partial_{\zeta} \beta)^{\nu-1} \bigwedge_{1}^{n-\nu} \overline{\partial \phi_{j}(\zeta)} \wedge \Phi_{j} = \int_{\Omega} \chi \bigwedge_{1}^{l} \overline{\partial \phi_{j}} \wedge \omega$$

for all cutoff functions χ with support near ζ^0 . Note that

$$\lim_{r \to 0} \prod_{j \in I} \frac{1}{(1 - \overline{\phi_j(\zeta)}\phi_j(z))^r} \prod_{j \notin I} \left(\frac{1 - |\phi_j(\zeta)|^2}{1 - \overline{\phi_j(\zeta)}\phi_j(z)} \right)^r = 1$$

and

$$\frac{-r(1-|\phi_j(\zeta)|^2)^{r-1}}{1-\overline{\phi_j(\zeta)}\phi_j(z)}\overline{\partial\phi_j} = \frac{\overline{\partial}(1-|\phi_j(\zeta)|^2)^r}{\phi_j(\zeta)-|\phi_j(\zeta)|^2\phi_j(z)}.$$

Thus we have

$$(2.4) \int_{\Omega} \chi f \wedge K_{I,\nu}^r = \int_{\Omega} f \wedge \frac{\omega_I \chi}{\beta^{\nu}} (1 + o(1)) \mathcal{O}(r^{n-\nu-l}) \bigwedge_{1}^{l} \frac{\overline{\partial} (1 - |\xi_j|^2)^r}{\xi_j - |\xi_j|^2 \phi_j(z)}$$

for χ with support near ζ^0 . If $\zeta^0 \in \sigma_I$ (i.e., $l = n - \nu$), then this integral tends to

(2.5)
$$\int_{\sigma_I} f \wedge \frac{\omega_I \chi}{\beta^{\nu} \prod_{j=1}^l (\xi_j - \phi_j(z))}$$

when $r \to 0$ (see Remark 2.2). If ζ^0 is outside σ_I , then (2.4) tends to zero when $r \to 0$. The various $(n, \nu - 1)$ -form ω , corresponding to points on σ_I can be pieced together to a global form ω_I defined in a neighborhood of σ_I , and thus $\int f \wedge K_{I,\nu}^r$ tends to the term $\int f \wedge K_{I,\nu}$ corresponding to I in

$$\sum_{|I|=n-\nu}' \int_{\zeta \in \sigma_I} f(\zeta) \wedge \frac{\omega_I(\zeta, z)}{\beta^{\nu} \prod_{j \in I} (\phi_j(\zeta) - \phi_j(z))}, \quad z \in \Omega.$$

Now we let $\nu = n$. Then there is a smooth (n, n-1) form ω_0 such that $\omega_0(\zeta, z) = \mathcal{O}(|\zeta - z|)$ and

$$\int_{\Omega} f \wedge K_{0,n}^r = \int_{\Omega} f \wedge \frac{\omega_0}{\beta^n}.$$

Remark 2.2. The limit process of (2.5) is justified by the following one-variable result ([1], [4])

$$\lim_{r \to 0} \int_{D} F(\zeta) \frac{\overline{\partial} (1 - |\zeta|^{2})^{r}}{\zeta - |\zeta|^{2} z} \wedge d\zeta = \lim_{r \to 0} \int_{D} \overline{\partial} \left(F(\zeta) \frac{(1 - |\zeta|^{2})^{r}}{\zeta - |\zeta|^{2} z} \right) \wedge d\zeta$$

$$- \lim_{r \to 0} \int_{D} (1 - |\zeta|^{2})^{r} \overline{\partial} \left(\frac{F(\zeta)}{\zeta - |\zeta|^{2} z} \right) \wedge d\zeta$$

$$= \lim_{r \to 0} \left[- \int_{T} F(\zeta) \frac{(1 - |\zeta|^{2})^{r}}{\zeta - |\zeta|^{2} z} d\zeta \right]$$

$$- \int_{D} \overline{\partial} \left(\frac{F(\zeta)}{\zeta - |\zeta|^{2} z} \right) \wedge d\zeta$$

$$= \int_{T} \frac{F(\zeta)}{\zeta - z} d\zeta.$$

3. Proofs of the main results

Theorem 1.1 is a consequence of the following proposition.

PROPOSITION 3.1. There exists a constant $C_{\alpha,\epsilon}$ such that

$$|d_z Sf(z)| \le C_{\alpha,\epsilon} |f|_{\Lambda_\alpha} \mathrm{dist}(z,\partial\Omega)^{\alpha-\epsilon-1}$$
 for $z \in \Omega$ and $0 < \epsilon < \alpha$.

PROOF. The first term in the right hand part of (2.3) is given by integrating f against the Bochner-Martinelli kernel over Ω . It is well-known that the Hölder norm of the term is dominated by the L^{∞} norm of f, so that it is enough to consider the case $1 \leq \nu \leq n-1$ and $|I| = n-\nu$. We may assume that $I = (1, \ldots, n-\nu)$. Let

(3.1)
$$S_{I,\nu}f(z) = \int_{\zeta \in \sigma_I} f(\zeta) \wedge \frac{\omega_I(\zeta, z)}{\beta^{\nu} \prod_{i=1}^{n-\nu} (\phi_i(\zeta) - \phi_i(z))}.$$

By differentiating under the integral sign in (3.1), one obtains

$$d_z S_{I,\nu} f(z) = J_0(z) + \sum_{\mu=1}^{n-\nu} J_1^{\mu}(z) + J_2(z),$$

where

$$J_{0}(z) = \int_{\sigma_{I}} f(\zeta) \wedge \frac{A_{0}(\zeta, z)}{\beta^{\nu} \prod_{j=1}^{n-\nu} (\phi_{j}(\zeta) - \phi_{j}(z))},$$

$$J_{1}^{\mu}(z) = \int_{\sigma_{I}} f(\zeta) \wedge \frac{A_{1}(\zeta, z)}{\beta^{\nu} (\phi_{\mu}(\zeta) - \phi_{\mu}(z))^{2} \prod_{j \neq \mu} (\phi_{j}(\zeta) - \phi_{j}(z))},$$

$$J_{2}(z) = \int_{\sigma_{I}} f(\zeta) \wedge \frac{A_{2}(\zeta, z)}{\beta^{\nu+1} \prod_{j=1}^{n-\nu} (\phi_{j}(\zeta) - \phi_{j}(z))}.$$

The expressions $A_j(\zeta, z)$ are double forms which satisfy $|A_j(\zeta, z)| \lesssim |\zeta - z|^j, j = 0, 1, 2$.

We will prove that for each pair of points $z^0 \in \overline{\Omega}$ and $\zeta^0 \in \sigma_I$, we can find neighborhoods U^{z^0} and U^{ζ^0} such that if χ is a smooth cutoff function with support in U^{ζ^0} , then the estimate

$$|J_1^{\mu}(z)| \lesssim |f|_{\Lambda_{\alpha}} \mathrm{dist}(z,\partial\Omega)^{\alpha-\epsilon-1} \quad \text{for} \quad \alpha > \epsilon > 0$$

holds uniformly for all $z \in U^{z^0} \cap \Omega$.

As usual, we assume that $|\phi_j(z^0)| = 1$ for $1 \le j \le l$ and $|\phi_j(z^0)| < 1$ for $l < j \le n - \nu$. Near z^0 , $w_1 = \phi_1, \ldots, w_l = \phi_l$ are part of a local coordinate system w_1, \ldots, w_n and moreover $\xi_1 = \phi_1, \ldots, \xi_n = \phi_n$ are local coordinates near ζ^0 . In these coordinates, the integral to estimate is

$$J_1^{\mu}(z) = \int_{\xi \in T^{n-\nu} \times D^{\nu}} \frac{f(\xi)\chi(\xi)A_1(\xi, w)}{|\xi - w|^{2\nu}(\xi_{\mu} - w_{\mu})^2 \prod_{j \neq \mu} (\xi_j - w_j)}.$$

We will consider the only term $J_1^1(z)$. We can write $J_1^1(z) = J_{1,1}^1(z) + J_{1,2}^1(z)$, where

(3.2)
$$J_{1,1}^{1}(z) = \int_{\xi \in T^{n-\nu} \times D^{\nu}} \frac{(f(\xi) - f(w_{1}))\chi(\xi)A_{1}(\xi, w)}{|\xi - w|^{2\nu}(\xi_{1} - w_{1})^{2} \prod_{i=2}^{l} (\xi_{i} - w_{j})}$$

and

(3.3)
$$J_{1,2}^{1}(z) = \int_{\xi \in T^{n-\nu} \times D^{\nu}} \frac{f(w_1)\chi(\xi)A_1(\xi, w)}{|\xi - w|^{2\nu}(\xi_1 - w_1)^2 \prod_{i=2}^{l} (\xi_i - w_i)},$$

where $f(w_1) = f(w_1, \xi_2, \dots, \xi_n)$.

Now we recall the following lemma in the unit disk in \mathbb{C}^1 (see 1.4.10 in [9]).

LEMMA 3.2. For c real, define

$$I_c(z) = \int_T \frac{d\zeta}{|\zeta - z|^{1+c}}.$$

If c > 0, then $I_c(z) \approx (1 - |z|^2)^{-c}$ and $I_0(z) \approx \log \frac{1}{1 - |z|^2}$.

Using Fubini's theorem and Lemma 3.2 in (3.2), it follows that

$$|J_{1,1}^{1}(z)| \lesssim |f|_{\Lambda_{\alpha}} \int_{\xi \in T^{n-\nu} \times D^{\nu}} \frac{1}{|\xi - w|^{2\nu-1} |\xi_{1} - w_{1}|^{2-\alpha} \prod_{j=2}^{l} |\xi_{j} - w_{j}|}$$

$$\lesssim |f|_{\Lambda_{\alpha}} \frac{1}{(1 - |w_{1}|^{2})^{1-\alpha}} \prod_{j=2}^{l} \log \frac{1}{1 - |w_{j}|^{2}}$$

$$\lesssim |f|_{\Lambda_{\alpha}} \left[\min_{1 \leq j \leq l} (1 - |w_{j}|^{2}) \right]^{\alpha - \epsilon - 1}$$

$$\lesssim |f|_{\Lambda_{\alpha}} \operatorname{dist}(z, \sigma_{I})^{\alpha - \epsilon - 1}$$

$$\lesssim |f|_{\Lambda_{\alpha}} \operatorname{dist}(z, \partial \Omega)^{\alpha - \epsilon - 1} \quad \text{for} \quad 0 < \epsilon < \alpha$$

uniformly for all $z \in U^{z^0} \cap \Omega$.

In order to estimate (3.3), we use integration by parts. Since χ has a compact support in U^{ζ^0} , using integration by parts, we have

$$\begin{split} J_{1,2}^{1}(z) &= \int_{\xi \in T^{n-\nu} \times D^{\nu}} \frac{f(w_{1})\chi(\xi)A_{1}(\xi,w)}{|\xi - w|^{2\nu}(\xi_{1} - w_{1})^{2} \prod_{j=2}^{l}(\xi_{j} - w_{j})} \\ &= -\int_{\xi \in T^{n-\nu} \times D^{\nu}} \frac{f(w_{1})}{\prod_{j=2}^{l}(\xi_{j} - w_{j})} \frac{\partial}{\partial \xi_{1}} \left(\frac{1}{\xi_{1} - w_{1}}\right) \frac{\chi(\xi)A_{1}(\xi,w)}{|\xi - w|^{2\nu}} \\ &= \int_{\xi \in T^{n-\nu} \times D^{\nu}} \frac{f(w_{1})}{\prod_{j=1}^{l}(\xi_{j} - w_{j})} \frac{\partial}{\partial \xi_{1}} \left[\frac{\chi(\xi)A_{1}(\xi,w)}{|\xi - w|^{2\nu}}\right]. \end{split}$$

Thus it follows that

$$|J_{1,2}^1(z)| \lesssim |f|_{L^{\infty}} \int_{\xi \in T^{n-\nu} \times D^{\nu}} \frac{1}{|\xi - w|^{2\nu} \prod_{j=1}^{l} |\xi_j - w_j|}.$$

For $\xi \in T^{n-\nu} \times D^{\nu}$, it follows that

$$|\xi - w|^{2
u} \prod_{j=1}^l |\xi_j - w_j| \ge \prod_1^l |\xi_j - w_j|^{1 + (2s
u)/l} \prod_{n-
u+1}^n |\xi_j - w_j|^{2-2s}$$

for $0 < s < \frac{1}{2}$. By Fubini's theorem and Lemma 3.2, we have

$$\int_{\xi \in T^{n-\nu} \times D^{\nu}} \frac{1}{\prod_{1}^{l} |\xi_{j} - w_{j}|^{1 + (2s\nu)/l} \prod_{n-\nu+1}^{n} |\xi_{j} - w_{j}|^{2 - 2s}}$$

$$\lesssim \prod_{1}^{l} \frac{1}{(1 - |w_{j}|^{2})^{(2s\nu)/l}}.$$

We choose s sufficiently small so that $0 < 2s\nu < 1 - \alpha + \epsilon$. Then we have

$$|J_{1,2}^{1}(z)| \leq C_{\alpha,\epsilon}|f|_{L^{\infty}} \left[\min(1-|\phi_{j}(z)|^{2})\right]^{\alpha-\epsilon-1}$$

$$\leq C_{\alpha,\epsilon}|f|_{L^{\infty}} \operatorname{dist}(z,\partial\Omega)^{\alpha-\epsilon-1} \quad \text{for} \quad 0 < \epsilon < \alpha.$$

Hence we have

$$|J_1^{\mu}(z)| \lesssim |f|_{\Lambda_{\alpha}} \mathrm{dist}(z,\partial\Omega)^{\alpha-\epsilon-1} \quad \text{for} \quad 0 < \epsilon < \alpha.$$

In cases of $J_0(z)$ and $J_2(z)$ we can see that $|J_2(z)| \lesssim |J_0(z)|$. The estimate $|J_0(z)| \lesssim |f|_{\Lambda_\alpha} \mathrm{dist}(z,\partial\Omega)^{\alpha-\epsilon-1}$ for $\epsilon>0$ can be obtained similarly and we omit the details. Thus we obtain

$$|d_z S_{I,\nu} f(z)| \lesssim |f|_{\Lambda_{\alpha}} \operatorname{dist}(z,\partial\Omega)^{\alpha-\epsilon-1}$$

for $0 < \epsilon < \alpha$ and all I and ν . Hence the proposition is proved.

In the proof of Proposition 3.1, if n=2, then it follows that

(3.4)
$$|d_z Sf(z)| \lesssim |f|_{\Lambda_\alpha} \operatorname{dist}(z, \partial \Omega)^{\alpha - 1}$$
 for $0 < \alpha < 1$

and

(3.5)
$$|d_z Sf(z)| \lesssim |f|_{L^{\infty}} \operatorname{dist}(z, \partial \Omega)^{-1}.$$

No integration by parts is needed for the proof of (3.5). By classical arguments, Theorem 1.2 is a consequence of (3.4) and (3.5) ([7]).

4. An example

We consider the sharpness of the estimates in Theorem 1.2.

Let D^2 be the unit polydisk in \mathbb{C}^2 . Let $0 < \alpha < 1$. Let $f = \overline{\partial}v$, where $v(z_1, z_2) = (1 - z_1)^{\alpha} \overline{z}_2$. Then $f = (1 - z_1)^{\alpha} d\overline{z}_2$ is a (0,1)-form in D^2 , $\overline{\partial} f = 0$ is obvious, and $f \in \Lambda_{\alpha}(D^2)$.

Suppose $u \in \Lambda_{\beta}(D^2)$ satisfies $\dot{\partial} u = f$ in D^2 . For 0 < d < 1/2, we consider the integral

(4.1)
$$I(d) = \int_{|z_2|=1/2} [u(1-d,z_2) - u(1-2d,z_2)] dz_2.$$

Since $u \in \Lambda_{\beta}(D^2)$, it follows that

$$(4.2) |I(d)| \lesssim d^{\beta}.$$

On the other hand, $\overline{\partial}(u-v)=0$, so u=v+h, with $h\in\mathcal{O}(D^2)$. By Cauchy integral theorem we can replace u by v in the integral (4.1). Therefore we have

(4.3)
$$I(d) = [d^{\alpha} - (2d)^{\alpha}] \int_{|z_2| = 1/2} \overline{z}_2 dz_2$$
$$= [d^{\alpha} - (2d)^{\alpha}] \frac{\pi i}{2}.$$

If $\beta > \alpha$, (4.2) and (4.3) lead to a contradiction as $d \to 0$.

References

- K. Adachi, M. Andersson, and H. R. Cho, L^p and H^p extensions of holomorphic functions from subvarieties of analytic polyhedra, Pacific J. Math. 189-2 (1999), 201-210.
- [2] M. Andersson, L_p estimates for the $\overline{\partial}$ equation in analytic polyhedra in Stein manifolds, Proc. of Mittag-Leffler 87/88 Math. Notes 38, Princeton Univ. Press, 34-47.
- [3] B. Berndtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst. Fourier 32 (1982), 91-110.
- [4] J. Boo, The H^p Corona theorem in analytic polyhedra, Ark. Mat. 35-2 (1997), 225-251.
- [5] G. M. Henkin and A. G. Sergeev, Uniform estimates for solutions of the Θ-equation in pseudoconvex polyhedra, Mat. Sb. 40 (1981), 522-567 (in Russian); Math. USSR-Sb 40 (1981), 469-509 (English trans.).

- [6] C. Menini, Estimations pour la résolution du $\bar{\partial}$ sur une intersection d'ouverts strictment pseudoconvexes, Math. Z. 225 (1997), 87-93.
- [7] R. M. Range, On Hölder and BMO estimates for $\bar{\partial}$ on convex domains in \mathbb{C}^2 , J. Geom. Anal. **2-6** (1992), 575–584.
- [8] R. M. Range and Y.-T. Siu, Uniform estimates for the $\bar{\partial}$ -equation on domains with piecewise smooth strictly pseudoconvex boundaries, Math. Ann. **206** (1973), 325–354.
- [9] W. Rudin, Function theory in the unit ball in \mathbb{C}^n , Springer-Verlag, 1980.

Department of Mathematics Education Andong National University Andong 760-749, Korea E-mail: chohr@andong.ac.kr