• Title/Summary/Keyword: Analysis of ginsenoside

Search Result 301, Processing Time 0.027 seconds

Simultaneous Analysis Method for Polar and Non-polar Ginsenosides in Cultivated Wild Ginseng by Reversed-phase HPLC-CAD (HPLC-CAD에 의한 산양삼의 극성 및 비극성 ginsenoside 동시 분석)

  • Ok, Seon;Kang, Jae Seon;Kim, Kang Min
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.247-252
    • /
    • 2016
  • Cultivated wild ginseng is a widely used dietary supplement and medicinal herb. The aim of this study was to optimize the ginseng using high performance liquid chromatography (HPLC)- charged aerosol detection (CAD) for ginsenoside analysis. CAD measures the physical property of an analyte and responds to almost all non-volatile species, independent of their nature, spectral properties, or particle size. It has become widely employed in pharmaceutical analysis. The cultivated wild ginseng extracts were analyzed for compositions of ginsenosides Rb1, Rd, Rg1, Rf, Re, and Rh1. The optimal analysis condition was set up from an experiment using a gradient. Ten grams of cultivated wild ginseng were extracted with 95% EtOH 100 ml for 24 hr at 80℃. The contents of the 6six major ginsenosides in the cultivated wild ginseng extract were Rb1 (5.48±0.12 mg/g), Rd (5.33±0.14 mg/g), Rg1 (12.80± 0.05 mg/g), Rf (19.08±0.68 mg/g), Re (19.87±0.05 mg/g), and Rh1 (16.47±0.16 mg/g), respectively. HPLC showed that the protopanaxatriol group (Rg1, Rf, Re, Rh1) had more content than the protopanaxadiol group (Rb1, Rd) in cultivated wild ginseng extract. In summary, the ginsenosides were identified with HPLC-CAD analysis, and their presence and quantity imply the importance of quality control, as well as the pharmacological activity of the ginseng root.

Overexpression of Farnesyl Diphosphate Synthase by Introducing CaFPS Gene in Panax ginseng C. A. Mey. (인삼에서 Farnesyl Diphosphate Synthase 과발현이 진세노사이드 생합성에 미치는 영향)

  • Park, Hong Woo;Kim, Ok Tae;Hyun, Dong Yun;Kim, Yong Bum;Kim, Jang Uk;Kim, Young Chang;Bang, Kyong Hwan;Cha, Seon Woo;Choi, Jae Eul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.1
    • /
    • pp.32-38
    • /
    • 2013
  • FPS (farnesyl diphosphate synthase) plays an essential role in organ development in plants. However, FPS has not previously been identified as a key regulatory enzyme in triterpene biosynthesis. In order to investigate the effect of FPS on ginsenosides biosynthesis, we over-expressed FPS of Centella asiatica (CaFPS) in Panax giseng adventitious roots. PCR analysis showed the integrations of the CaFPS and hygromycin phosphotransferase genes and we ultimately selected three lines. The result of Southern blot analysis demonstrated the introduction of the CaFPS gene into genome of ginseng. In addition, the results of RT-PCR analysis revealed that CaFPS gene overexpression induced an accumulation of its transcription in the ginseng adventitious roots. To determine whether or not the overexpression of the CaFPS gene contributes to the downstream gene expression associated with triterpene biosynthesis, the level of mRNAs was analyzed by real-time PCR. The result showed that no differences were detected in any expression of all genes. To determine quantitatively the content of ginsenosides in transgenic ginseng adventitious roots, HPLC analysis was conducted. The content of total 7 ginsenosides was increased to 1.8, 1.4, and 1.7 times than that of the controls, respectively. This indicated that the overexpression of CaFPS in ginseng adventitious roots causes an increase in ginsenoside content, although down stream genes of FPS gene were suppressed by CaFPS overexpression.

Ginsenoside Rb2 suppresses cellular senescence of human dermal fibroblasts by inducing autophagy

  • Kyeong Eun Yang;Soo-Bin Nam;Minsu Jang;Junsoo Park;Ga-Eun Lee;Yong-Yeon Cho;Byeong-Churl Jang;Cheol-Jung Lee;Jong-Soon Choi
    • Journal of Ginseng Research
    • /
    • v.47 no.2
    • /
    • pp.337-346
    • /
    • 2023
  • Background: Ginsenoside Rb2, a major active component of Panax ginseng, has various physiological activities, including anticancer and anti-inflammatory effects. However, the mechanisms underlying the rejuvenation effect of Rb2 in human skin cells have not been elucidated. Methods: We performed a senescence-associated β-galactosidase staining assay to confirm cellular senescence in human dermal fibroblasts (HDFs). The regulatory effects of Rb2 on autophagy were evaluated by analyzing the expression of autophagy marker proteins, such as microtubule-associated protein 1A/1B-light chain (LC) 3 and p62, using immunoblotting. Autophagosome and autolysosome formation was monitored using transmission electron microscopy. Autophagic flux was analyzed using tandem-labeled GFP-RFP-LC3, and lysosomal function was assessed with Lysotracker. We performed RNA sequencing to identify potential target genes related to HDF rejuvenation mediated by Rb2. To verify the functions of the target genes, we silenced them using shRNAs. Results: Rb2 decreased β-galactosidase activity and altered the expression of cell cycle regulatory proteins in senescent HDFs. Rb2 markedly induced the conversion of LC3-I to LC3-II and LC3 puncta. Moreover, Rb2 increased lysosomal function and red puncta in tandem-labeled GFP-RFP-LC3, which indicate that Rb2 promoted autophagic flux. RNA sequencing data showed that the expression of DNA damage-regulated autophagy modulator 2 (DRAM2) was induced by Rb2. In autophagy signaling, Rb2 activated the AMPK-ULK1 pathway and inactivated mTOR. DRAM2 knockdown inhibited autophagy and Rb2-restored cellular senescence. Conclusion: Rb2 reverses cellular senescence by activating autophagy via the AMPK-mTOR pathway and induction of DRAM2, suggesting that Rb2 might have potential value as an antiaging agent.

Ginsenosides analysis in the crude saponin fraction extracted from Korean red ginseng, and its efficacious analysis against acute pulmonary inflammation in mice

  • Lee, Seung Min;Lim, Heung Bin
    • Analytical Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.146-153
    • /
    • 2017
  • In this study, we isolated ginseng crude saponin (GCS) from Korean red ginseng (KRG) and determined the ginsenoside content in it to investigate the physiological and pathological effects of GCS on acute pulmonary inflammation induced by intratracheal instillation of cigarette smoke condensates (CSC) and lipopolysaccharide (LPS) solution in BALB/c mice. GCS was orally administered at doses of 10 mg/kg and 25 mg/kg for 3 weeks. The recovery rate of GCS from KRG was 6.5 % and total ginsenosides from GCS was 1.13 %, and the content of Rb1 was the highest among them. Total inflammatory cells in the lung homogenates and bronchoalveolar lavage fluid (BALF) increased following intratracheal administration of CSC and LPS. However, GCS administration impaired this increase. Furthermore, it inhibited the increase in leukocytes in the blood, considerably decreased neutrophils in BALF, and declined infiltration of inflammatory cells and deposition of collagen in the tracheal and alveolar tissue. In this study, GCS was found to have a protective effect against acute pulmonary inflammation and it may be beneficial in preventing various respiratory diseases.

Simultaneous analysis of 12 kind maker components in Banhabaekchulchhonma-tang by RP-HPLC (RP-HPLC를 이용한 반하백출천마탕에서 12종 지표성분의 동시분석)

  • Lee, Kwang Jin;Yang, Hye Jin;Ma, Jin Yeul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4682-4691
    • /
    • 2014
  • Banhabaekchulchhonma-tang is a traditional Korean herbal prescription with a range of pharmacological activities. In this study, the simultaneous analysis of 12 kinds of marker components, Homogentisic acid, Hesperidin, Naringin, Alisol A, Atractylenolide II, Atractylenolide III, Ginsenoside Rg1, Formononetin, Gastrodin, Berberine, Palmatine and 6-gingerol, in Banhabaekchulchhonma-tang was performed using high-performance liquid chromatography (RP-HPLC). The standard sample of commercial $C_{18}$ reversed phase-column using water (0.1% TFA) and acetonitrile as the mobile phase with a step gradient elution mode. The flow rate (1.0mL/min), injection volume ($10{\mu}L$) and column oven temperature ($40^{\circ}C$) at a 200, 220, 280 and 340nm wavelength was conducted. All calibration curves of the standard components showed good linearity ($r^2$ >0.999). In addition, the limit of detection (LOD) and limit of quantification (LOQ) ranged from 0.012 to $0.878{\mu}g/mL$ and 0.009 to $0.290{\mu}g/mL$. The precision intra-day and inter-day were ranged from 0.07 to 1.21% and 0.20 to 0.90%, respectively. The recoveries ranged from 97.17 to 108.40%. Each sample amount showed a very small change. These results highlight the efficient quality evaluation of Banhabaekchulchhonma-tang.

Metabolomic approach for discrimination of processed ginseng genus (Panax ginseng and Panax quinquefolius) using UPLC-QTOF MS

  • Park, Hee-Won;In, Gyo;Kim, Jeong-Han;Cho, Byung-Goo;Han, Gyeong-Ho;Chang, Il-Moo
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.59-65
    • /
    • 2014
  • Discriminating between two herbal medicines (Panax ginseng and Panax quinquefolius), with similar chemical and physical properties but different therapeutic effects, is a very serious and difficult problem. Differentiation between two processed ginseng genera is even more difficult because the characteristics of their appearance are very similar. An ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF MS)-based metabolomic technique was applied for the metabolite profiling of 40 processed P. ginseng and processed P. quinquefolius. Currently known biomarkers such as ginsenoside Rf and F11 have been used for the analysis using the UPLC-photodiode array detector. However, this method was not able to fully discriminate between the two processed ginseng genera. Thus, an optimized UPLC-QTOF-based metabolic profiling method was adapted for the analysis and evaluation of two processed ginseng genera. As a result, all known biomarkers were identified by the proposed metabolomics, and additional potential biomarkers were extracted from the huge amounts of global analysis data. Therefore, it is expected that such metabolomics techniques would be widely applied to the ginseng research field.

HPLC/ELSD Analysis of ginseng saponins with PGC column

  • Shin, Byong-Kyu;Piao, Xiang-Lan;Yoo, Hye-Hyun;Park, Yun-Kyung;Baek, Seung-Hoon;Kim, Bak-Kwang;Park, Man-Ki;Park, Jeong-Hill
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.218.1-218.1
    • /
    • 2003
  • Saponins are known to be the major constituent of Panax ginseng. More than 30 kinds of ginseng saponins are reported so far. The major saponins in white ginseng (WG) or red ginseng (RG) are ginsenosides Rb1, Rb2, Rc, Rd, Rg1, and Re. HPLC method with ELSD or UV detection was used to analyze ginsenosides. Recently, a new processed ginseng with fortified activity, named as Sun Ginseng (SG), was reported. The major ginsenosides of SG are totally different from that of WG or RG, i.e., ginsenoside Rg3, Rk1, and Rg5 are the major constituents of SG. (omitted)

  • PDF

Identification of Nuclear Receptors by RT-PCR in F9 Cells Induced by Ginsenosides

  • Youl-Nam Lee;Shi
    • Journal of Ginseng Research
    • /
    • v.21 no.3
    • /
    • pp.147-152
    • /
    • 1997
  • Ginsenosides $Rh_1$ and $Rh_2$ Induced the differentiation of F9 teratocarcinoma stem cells. These agents are structurally similar to the steroid hormones, therefore, we speculated that the steroid receptor (s) or novel nuclear receptor (s) could be involved in the differentiation process induces by them. Based on this speculation, we tried to alone new nuclear receptors with reverse transcription-polymerase chain reaction (RT-PCR) method by isolating RNA from F9 teratocarcinoma cells induced by ginsenosides. By using RT-PCR with degenerated primers from highly conserved DNA binding domain of nuclear receptors, we identified several nuclear receptors. In northern blot analysis we found that these clones are transcriptionally regulated by ginsenoside Rhl or Rh2 treatment. Further characterizations of these clones are needed to identify the mechanism of gene expression, which has an important role in the differentiation of F9 cells induced by ginsenosides.

  • PDF

A Survey on the Quality Characteristics of Dried Ginseng Products (건조인삼제품의 품질 특성 조사)

  • Gil, Bog-Im
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.5
    • /
    • pp.1003-1006
    • /
    • 2003
  • The quality of dried ginseng products (white ginseng, red ginseng, and taeguk ginseng) was investigated according to the National Standards. All the dried ginseng products met the general quality standard established: moisture content of 14.0% or less, ash content of 5.0% or less, and water-saturated n-butanol extracts of 2.0% or more. Ginsenoside $Rb_1$, Rf, and $Rg_1$, the effective components of Korean ginseng were detected by HPLC analysis. However, uniformity of individual products within a package was not kept for almost all of the products except for red ginseng products.

Studies on Quality Evaluation of Crude Drug Preparation(II) -Analysis of Saengmaek-san by Thin Layer Chromatography and High Performance Liquid Chromatography- (생약 복합제제의 품질평가에 관한 연구(제 2 보) -생진산(生賑散)의 품질평가 방법에 관하여-)

  • Hong, N.D.;Kim, J.W.;Won, D.W.;Kong, Y.C.;Kim, N.J.;Joo, S.M.
    • Journal of Pharmaceutical Investigation
    • /
    • v.17 no.1
    • /
    • pp.22-30
    • /
    • 1987
  • Evaluation method of crude drug preparations was studied in Saengmaek-san. Zig-zag TLC scanning profiles and high performance liquid chromatograms were obtained from Saengmaek-san and its each crude drug. A method using TLC densitometry and high performance liquid chromatography was established for the precise determination of ginsenoside $Rb_1$ in Saengmaek-san containing Ginseng Radix. Consequently, ginsenosicle $Rb_1$ content was 0.45-0.48 mg per g of Saengmaek-san. This method was found to be useful for the quality evaluation of oriental medicinal preparations.

  • PDF