• Title/Summary/Keyword: Analysis of Kinematic

Search Result 1,490, Processing Time 0.032 seconds

Velocity and Friction Force Distribution in Rotary CMP Equipment (회전형 CMP장비의 속도 및 마찰력 분포 해석)

  • Kim, Hyeong Jae;Jeong, Hae Do;Lee, Eung Suk;Sin, Yeong Jae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.39-39
    • /
    • 2003
  • As the design rules in semiconductor manufacturing process become more and more stringent, the higher degree of planarization of device surface is required for a following lithography process. Also, it is great challenge for chemical mechanical polishing to achieve global planarization of 12” wafer or beyond. To meet such requirements, it is essential to understand the CMP equipment and process itself. In this paper, authors suggest the velocity distribution on the wafer, direction of friction force and the uniformity of velocity distribution of conventional rotary CMP equipment in an analytical method for an intuitive understanding of variation of kinematic variables. To this end, a novel dimensionless variable defined as “kinematic number” is derived. Also, it is shown that the kinematic number could consistently express the velocity distribution and other kinematic characteristics of rotary CMP equipment.

Velocity and Friction Force Distribution in Rotary CMP Equipment (회전형 CMP장비의 속도 및 마찰력 분포 해석)

  • 김형재;정해도;이응숙;신영재
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.5
    • /
    • pp.29-38
    • /
    • 2003
  • As the design rules in semiconductor manufacturing process become more and more stringent, the higher degree of planarization of device surface is required for a following lithography process. Also, it is great challenge for chemical mechanical polishing to achieve global planarization of 12” wafer or beyond. To meet such requirements, it is essential to understand the CMP equipment and process itself. In this paper, authors suggest the velocity distribution on the wafer, direction of friction force and the uniformity of velocity distribution of conventional rotary CMP equipment in an analytical method for an intuitive understanding of variation of kinematic variables. To this end, a novel dimensionless variable defined as “kinematic number” is derived. Also, it is shown that the kinematic number could consistently express the velocity distribution and other kinematic characteristics of rotary CMP equipment.

A Study on the Characteristics of Gait in Patients with Chronic Low Back Pain (만성요통환자의 보행특성에 관한 연구)

  • Kim, Kyoung;Ko, Joo-Yeon;Lee, Sung-Young
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.2
    • /
    • pp.79-85
    • /
    • 2009
  • Purpose: This study examined the characteristics of gait in patients with chronic low back pain. Methods: The subjects were out-patients suffering from chronic low back pain at the department of physical therapy, B hospital in Seoul. Gait analysis was performed by dividing the subjects into two groups. The study and control group comprised 15 chronic low back pain patients and 14 healthy people, respectively. Gait analysis was performed using a VICON 512 Motion Analysis System to obtain the spatio-temporal and kinematic parameters. Results: First, there was a significant difference in the spatio-temporal parameters between the two groups (p<0.05). Second, the study group showed significant differences in the kinematic parameters during the stance phase (p<0.05). Third, there were significant differences in kinematic parameters in the study group during the swing phase (p<0.05). Conclusion: The gait pattern of patients with chronic low back pain is characterized by more rigid patterns. Compared to the control group, there was a decrease in the spatio-temporal parameters and kinematic parameters in patients with chronic low back pain. These findings are expected to play a role as basic data and to form a rehabilitation program for low back pain patients.

  • PDF

Biomechanical Analysis on Kinematic Chains Type of Trunk (체간의 운동연쇄 형태에 따른 운동역학적 분석)

  • Han, Je-Hee;Woo, Byung-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.3
    • /
    • pp.277-284
    • /
    • 2010
  • The purpose of this study was to investigate the trunk rotation type by wheel and axle. In order to analysis, 3D-motion analysis and electromyography were conducted on kinematic variables, impulse, average-EMG and integrated-EMG. Twelve healthy (age: $21.8{\pm}2.2$ yrs, height: $175.4{\pm}5.0cm$, weight: $66.7{\pm}6.4kg$) participated in the experiment. The results were as follows; in hand's velocity and acceleration, wheel and axial rotating movement using kinematic chain(type 3) were much faster. In impulse, type 3 was much stronger. In average-EMG, right and left, latissimus dorsi muscles was much stronger. In integrated-EMG, left erector spinae, right/left latissimus dorsi, and left external oblique muscles was much stronger. These results considered that, in the trunk rotation utilizing the kinematic chains action, latissimus dorsi muscles highly contribute to the muscle utilization that makes the rotating movement maximally effective.

Analysis of 3 Dimension Topography by Real-Time Kinematic GPS Surveying (RTK GPS 측량에 의한 3차원 지형 해석)

  • 신상철;서철수
    • Spatial Information Research
    • /
    • v.9 no.2
    • /
    • pp.309-324
    • /
    • 2001
  • To apply the real-time kinematic GPS surveying technique, this research has tried to obtain the TOKYO datum first from the continuous reference stations distributed all over the country. Then, analysis of the geography of a coastal area including both of land and sea has been carried out by the post-processed continuous kinematic GPS technique and the real-time kinematic GPS surveying technique. After considering the initial conditions and measuring time zone for real-time kinematic GPS, post-processed and the real-time kinematic GPS measurements have been carried out. A new system has been proposed to store measured data by using a program developed to store GPS data in real time and to monitor the satellite condition through controller simultaneously. The accuracy of GPS data acquired in real time was as good as that acquired by post processing. It is expected that it will be useful for the analysis of coastal geographic characteristics because DTM can be also constructed for the harbor reclamation, the dredging and the variation of soil movement in a river.

  • PDF

A Study on the Kinetodynamic Analysis for General Disk Cam Driving Slider Mechanisms (캠구동 슬라이더기구의 기구동역학 해석에 관한 연구)

  • Shin, Joong-Ho;Kim, Jong-Soo;Ha, Kyong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.6
    • /
    • pp.871-883
    • /
    • 1997
  • Kinetodynamics of a cam driving slider mechanism consists of kinematic analysis and force analysis. The kinematic analysis is to determine the kinematic characteristics of a cam driving mechanism and a slider mechanism. The force analysis is to determine the joint forces of links, the contact forces of the cam and follower, and the driving torque of a main shaft. This paper proposes a close loop method and a tangent substitution method to formulate the relationships of kinematic chains and to calculate the displacement, velocity and acceleration of the cam driving slider mechanism. Also, and instant velocity center method is proposed to determine the cam shape from the geometric relationships of the cam and the roller follower. For dynamic analysis, the contact force and the driving torque of the cam driving slider mechanism are calculated from the required sliding forces, sliding motion and weight of the slider.

A Position based Kinematic Method for the Analysis of Human Gait

  • Choi Ahn Ryul;Rim Yong Hoon;Kim Youn Soo;Mun Joung Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.10
    • /
    • pp.1919-1931
    • /
    • 2005
  • Human joint motion can be kinematically described in three planes, typically the frontal, sagittal, and transverse, and related to experimentally measured data. The selection of reference systems is a prerequisite for accurate kinematic analysis and resulting development of the equations of motion. Moreover, the development of analysis techniques for the minimization of errors, due to skin movement or body deformation, during experiments involving human locomotion is a critically important step, without which accurate results in this type of experiment are an impossibility. The traditional kinematic analysis method is the Angular-based method (ABM), which utilizes the Euler angle or the Bryant angle. However, this analysis method tends to increase cumulative errors due to skin movement. Therefore, the objective of this study was to propose a new kinematic analysis method, Position-based method (PBM), which directly applies position displacement data to represent locomotion. The PBM presented here was designed to minimize cumulative errors via considerations of angle changes and translational motion between markers occurring due to skin movements. In order to verify the efficacy and accuracy of the developed PBM, the mean value of joint dislocation at the knee during one gait cycle and the pattern of three dimensional translation motion of the tibiofemoral joint at the knee, in both flexion and extension, were accessed via ABM and via new method, PBM, with a Local Reference system (LRS) and Segmental Reference system (SRS), and then the data were compared between the two techniques. Our results indicate that the proposed PBM resulted in improved accuracy in terms of motion analysis, as compared to ABM, with the LRS and SRS.

The test-retest reliability of gait kinematic data measured using a portable gait analysis system in healthy adults

  • An, Jung-Ae;Byun, Kyung-Seok;Lee, Byounghee
    • Journal of Korean Physical Therapy Science
    • /
    • v.27 no.3
    • /
    • pp.25-34
    • /
    • 2020
  • Background: Gait analysis is an important measurement for health professionals to assess gait patterns related to functional limitations due to neurological or orthopedic conditions. The purpose of this study was to investigate the reliability of the newly developed portable gait analysis system (PGAS). Design: Cross-sectional design. Test-retest study. Methods: The PGAS study was based on a wearable sensor, and measurement of gait kinematic parameters, such as gait velocity, cadence, step length and stride length, and joint angle (hip, knee, and ankle) in stance and swing phases. The results were compared with a motion capture system (MCS). Twenty healthy individuals were applied to the MCS and PGAS simultaneously during gait performance. Results: The test-retest reliability of the PGAS showed good repeatability in gait parameters with mean intra-class correlation coefficients (ICCs) ranging from 0.840 to 0.992, and joint angles in stance and swing phase from 0.907 to 0.988. The acceptable test-retest ICC was observed for the gait parameters (0.809 to 0.961), and joint angles (0.800 to 0.977). Conclusion: The results of this study indicated that the developed PGAS showed good grades of repeatability for gait kinematic data along with acceptable ICCs compared with the results from the MCS. The gait kinematic parameters in healthy subjects can be used as standard values for adopting this PGAS.

Design of an Omni-directional mobile Robot with 3 Caster Wheels

  • Kim, Wheekuk;Kim, Do-Hyung;Yi, Byung-Ju;Yang, Sung-Il;You, Bum-Jae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.4
    • /
    • pp.210-216
    • /
    • 2001
  • In this paper, design of a 3-degree-of-freedom mobile robot with three caster wheels is performed. Initially, kinematic modeling and singularity analysis of the mobile robot is performed. It is found that the singularity can be avoided when the robot has more than two wheels on which two active joints are located. Optimal kinematic parameters of mobile robots with three active joint variables and with four active joint variables are obtained and compared with respect to kinematic isotropic index of the Jacobian matrix of the mobile robot which is functions of the wheel radius and the length of steering link.

  • PDF

Kinematic Analysis and Optimal Design of 2RPR-RP Parallel Manipulator (2RPR-RP 병렬 기구의 기구학 해석 및 최적설계)

  • Nam, Yun-Joo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.11 s.242
    • /
    • pp.1509-1517
    • /
    • 2005
  • This paper presents the two degree-of-freedom(DOF) planar parallel mechanism called 2R$\underline{P}$R-RP manipulator, whose degree-of freedom is dependent on a passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed analytically: the inverse and forward kinematic problems are solved in the closed font the practical workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters and the operating limits of the actuators, the optimization of the mechanism is performed considering its dexterity and stiffness. Finally, the kinematic performances of the optimized mechanism are evaluated through comparing to the 5-bar parallel manipulator.