• Title/Summary/Keyword: Analysis Time

Search Result 48,717, Processing Time 0.059 seconds

ISAR Motion Compensation using Evolutionary Programming-Based Time-Frequency Analysis (진화 프로그래밍 기반의 시간-주파수 영역 해석법을 이용한 ISAR 영상 이동보상기법)

  • 최인식;김효태
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.11
    • /
    • pp.1156-1160
    • /
    • 2003
  • Many time-frequency analysis techniques have been used for motion compensated ISAR(Inverse Synthetic Aperture Radar) imaging. In this work, a novel time-frequency(T-F) analysis called evolutionary adaptive wavelet transform (EAWT) and evolutionary adaptive joint time-frequency(EAJTF) procedure are used for the motion compensated ISAR image. To show the validity of our algorism, we use simulated MIG-25 and Boeing 727(B-727) ISAR data. From the constructed ISAR image using EAWT and EAJTF, we show that our algorithm can obtain a clear motion compensated ISAR image such as other time-frequency analysis techniques.

Study on Trajectory Prediction Accuracy Analysis Method for Performance Improvement of a Trajectory Prediction Module of Arrival Manager (도착관리시스템 궤적 예측 모듈의 성능 개선을 위한 궤적 예측 정확도 분석 방법 연구)

  • Oh, Eun-Mi;Kim, Hyounkyoung;Eun, Yeonju;Jeon, Daekeun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.23 no.3
    • /
    • pp.28-34
    • /
    • 2015
  • An analysis method of trajectory prediction has been suggested and the developed trajectory prediction module, which is an important functional component of the Arrival Manager (AMAN) of Jeju airport, has been tested by applying the suggested method. The objective of this method is to improve prediction performance of the trajectory prediction module. The trajectory prediction module predicts the trajectories based on the real-time track data and flight plans. Therefore, the suggested analysis method includes the simulation framework which is based on real-time playback, recording, and graphic display systems for testing. Besides, the definition of time error, which is a important index for the time based scheduling system, such as AMAN, is included in the suggested analysis method. An example of arrival time prediction accuracy improvement through the suggested analysis method has also been presented.

Accuracy evaluation of 3D time-domain Green function in infinite depth

  • Zhang, Teng;Zhou, Bo;Li, Zhiqing;Han, Xiaoshuang;Gho, Wie Min
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.50-56
    • /
    • 2021
  • An accurate evaluation of three-dimensional (3D) Time-Domain Green Function (TDGF) in infinite water depth is essential for ship's hydrodynamic analysis. Various numerical algorithms based on the TDGF properties are considered, including the ascending series expansion at small time parameter, the asymptotic expansion at large time parameter and the Taylor series expansion combines with ordinary differential equation for the time domain analysis. An efficient method (referred as "Present Method") for a better accuracy evaluation of TDGF has been proposed. The numerical results generated from precise integration method and analytical solution of Shan et al. (2019) revealed that the "Present method" provides a better solution in the computational domain. The comparison of the heave hydrodynamic coefficients in solving the radiation problem of a hemisphere at zero speed between the "Present method" and the analytical solutions proposed by Hulme (1982) showed that the difference of result is small, less than 3%.

Time-frequency analysis of a coupled bridge-vehicle system with breathing cracks

  • Wang, W.J.;Lu, Z.R.;Liu, J.K.
    • Interaction and multiscale mechanics
    • /
    • v.5 no.3
    • /
    • pp.169-185
    • /
    • 2012
  • The concrete bridge is likely to produce fatigue cracks during long period of service due to the moving vehicular loads and the degeneration of materials. This paper deals with the time-frequency analysis of a coupled bridge-vehicle system. The bridge is modeled as an Euler beam with breathing cracks. The vehicle is represented by a two-axle vehicle model. The equation of motion of the coupled bridge-vehicle system is established using the finite element method, and the Newmark direct integration method is adopted to calculate the dynamic responses of the system. The effect of breathing cracks on the dynamic responses of the bridge is investigated. The time-frequency characteristics of the responses are analyzed using both the Hilbert-Huang transform and wavelet transform. The results of time-frequency analysis indicate that complicated non-linear and non-stationary features will appear due to the breathing effect of the cracks.

Nondestructive Evaluation for Artificial Degraded Stainless 316 Steel by Time-Frequency Analysis Method

  • Nam, Ki-Woo;Kim, Young-Un
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.3
    • /
    • pp.87-92
    • /
    • 2001
  • In this studies, joint time-frequency analysis techniques were applied to analyze ultrasonic signals in the degraded austenitic 316 stainless steels, to study the evolution of damage in these materials. It was demonstrated that the nonstationary characteristics of ultrasonic signals could be analyzed effectively by these methods. The WVD was more effective for analyzing the attenuation and frequency characteristics of the degraded materials through ultrasonic. It is indicated that the joint time-frequency analysis, WVD method, should also be useful in evaluating various damages and defects in structural members.

  • PDF

A Viscoelastic Analysis for Spent Pressurized Water Reactor Nuclear Fuel Disposal Canister (가압경수로 고준위폐기물 처분용기에 대한 점탄성 해석)

  • 권영주;하준용
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.327-330
    • /
    • 2003
  • In this paper, a viscoelastic structural analysis for the spent pressurized water reactor(PWR) nuclear fuel disposal canister is carried out to predict the collapse of the canister while the canister is stored in a deep repository for long time. There may exist some subterranean heat in a deep repository while the nuclear fuel disposal canister is stored for long time. Then, a time-dependent viscoelastic structural deformation may occur in the canister due to the subterrnean heat Hence, the viscoelastic stress variation according to time should be computed to predict the structural strength of the canister. A viscoelastic material model is adopted. Analysis results show that even though some subterrnean heat may exist for quite a long time, the canister structure still endures stresses below the yield strength of the canister. Hence, some subterranean heat cannot seriously affect the structural strength of the canister.

  • PDF

MULTIPLE SCALE ANALYSIS OF A DELAYED PREDATOR PREY MODEL WITHIN RANDOM ENVIRONMENT

  • Saha, Tapan;Bandyopadhyay, Malay
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1191-1205
    • /
    • 2008
  • We consider a delayed predator prey model. The local stability and Hopf bifurcation results are stated taking the time delay as a control parameter. We apply multiple scale analysis to analyze the effects of additive white noises near the Hopf bifurcation point at the positive interior equilibrium state. The governing equations for the amplitude of oscillations on a slow time scale are derived. We identify the process of amplitude of oscillations and derive its transient properties. We show that oscillations, which would decay in the deterministic system whenever time delay lies below its critical value, persists for long time under the validity of multiple scale analysis.

  • PDF

Flow Characteristics and Residence Time of Activated Carbon in the Cyclone for Optimized Design of an Adsorption/Catalysis Reactor (흡착/촉매 공정개선을 위한 사이클론 내 유동특성 및 활성탄 체류시간 산정)

  • Choi, Choeng-Ryul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.31 no.5
    • /
    • pp.416-424
    • /
    • 2007
  • In adsorption/catalytic process, numerical analysis has been performed to identify the flow characteristics of flue gas in the cyclone and to estimate the residence time of activated carbon using Computational Fluid Dynamics (CFD) technique. To consider flue gas and activated carbon particles simultaneously, Euler-Lagrangian model was employed so that residence time could be obtained from the numerical analysis directly. The numerical analysis has been performed with different three particle sizes and compared each flow characteristics with particle’ size. Fundamental flow patterns of flue gas and activated carbon particles, pressure distribution, residence time of flue gas, and activated carbon particles and distribution of activated carbon have been obtained from the numerical analysis.

A Study on Computational Method for Fatigue Life Prediction of Vehicle Structures (차체 구조물의 피로수명 예측을 위한 컴퓨터 시뮬레이션 방법에 관한 연구)

  • 이상범;박태원;임홍재
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.686-691
    • /
    • 2000
  • In this paper a computer aided analysis method is proposed for durability assessment in the early design stages using dynamic analysis, stress analysis and fatigue life prediction method. From dynamic analysis of a vehicle suspension system, dynamic load time histories of a suspension component are calculated. From the dynamic load time histories and the stress of the suspension component, a dynamic stress time history at the critical location is produced using the superposition principle. Using linear damage law and cycle counting method, fatigue life cycle is calculated. The predicted fatigue life cycle is verified by experimental durability tests.

  • PDF

A study on characteristics of blast vibration waveform by vibration time history analysis (진동이력분석을 응용한 발파 진동파형의 특성에 관한 연구)

  • 김진수;임한욱
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.36-47
    • /
    • 1999
  • For cautious controlled blasting, it is necessary to understand characteristics of the blasting vibration. In this study, a series of tests were carried out to investigate the several characteristics of blasting vibration waveform by vibration time history analysis. Separation between impulse vibration and free vibration from blasting vibration, duration time, effects of overlap of free vibration upon the level of vibration and changes of waveform according to increase of charge weight per delay etc. were studied with waveform analysis.

  • PDF