• Title/Summary/Keyword: Analysis Time

Search Result 48,717, Processing Time 0.064 seconds

Efficient Anomaly Detection Through Confidence Interval Estimation Based on Time Series Analysis

  • Kim, Yeong-Ju;Jeong, Min-A
    • International journal of advanced smart convergence
    • /
    • v.4 no.2
    • /
    • pp.46-53
    • /
    • 2015
  • This paper suggests a method of real time confidence interval estimation to detect abnormal states of sensor data. For real time confidence interval estimation, the mean square errors of the exponential smoothing method and moving average method, two of the time series analysis method, were compared, and the moving average method with less errors was applied. When the sensor data passes the bounds of the confidence interval estimation, the administrator is notified through alarms. As the suggested method is for real time anomaly detection in a ship, an Android terminal was adopted for better communication between the wireless sensor network and users. For safe navigation, an administrator can make decisions promptly and accurately upon emergency situation in a ship by referring to the anomaly detection information through real time confidence interval estimation.

Source Localization of an Impact on a Plate using Time-Frequency Analysis (시간 주파수 분석을 이용한 충격발생 위치 추정)

  • Park, Jin-Ho;Choi, Young-Chul;Lee, Jeong-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.107-111
    • /
    • 2005
  • It has been reviewed whether it would be suitable that the application of the time-frequency signal analysis techniques to estimate the location of the impact source in plate structure. The STFT(Short Time Fourier Transform), WVD(Wigner-Ville distribution) and CWT(Continuous Wavelet Transform) methods are introduced and the advantages and disadvantages of those methods are described by using a simulated signal component. The essential of the above proposed techniques is to separate the traveling waves in both time and frequency domains using the dispersion characteristics of the structural waves. These time-frequency methods are expected to be more useful than the conventional time domain analyses fer the impact localization problem on a plate type structure. Also it has been concluded that the smoothed WVD can give more reliable means than the other methodologies for the location estimation in a noisy environment.

  • PDF

Differences in Life Satisfaction according to Type of Time Use in the Rural Elderly (농촌노인의 생활시간 유형에 따른 생활만족도 차이)

  • Cho, Hee-Keum
    • Journal of Family Resource Management and Policy Review
    • /
    • v.23 no.2
    • /
    • pp.41-59
    • /
    • 2019
  • The purpose of this study was to explore a typology of time use and analyze differences in life satisfaction according to the types of time use in the rural elderly. The research subjects were 1,000 people aged 65 years and over living in the rural areas of Korea. The data were collected through structured questionnaires and a time-use diary. The statistical methods used in the analysis included calculation of the mean and the standard deviation, ANOVA, Duncan's multiple range test, cluster analysis, and multiple regression analysis. The time use practices of the rural elderly were classified into three types: work-leisure balance, work-oriented, and leisure-oriented type. Life satisfaction of the rural elderly differed according to the type of time use. The work-oriented types showed the highest scores of life satisfaction, and leisure-oriented types showed the lowest.

Generation of Simulated Earthquakes and Time-history Dynamic Analysis of Containment Building (지진 데이터 생성 및 격납건물 시간이력 해석)

  • 배용귀;이성로
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.608-612
    • /
    • 2003
  • In the seismic response analysis, the artificial earthquake time history is generated to do the exact seismic analysis for the complex structural system like as containment building. In the present study the several simulated earthquakes are generated by use of SIMQKE program and the time history dynamic analysis of containment building is performed. Also, the seismic responses are statistically analyzed. The seismic response uncertainty arisen from the simulation of earthquakes is one of major uncertainties and the statistical description is needed to account for the random nature of earthquake.

  • PDF

Analysis of an LCLC Resonant Converter with a Capacitive Output Filter

  • Jafarboland, Mehrdad
    • Journal of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.662-668
    • /
    • 2011
  • This paper presents an analysis of a 4th order LCLC resonant converter with a capacitive output filter using the state-space approach. The analysis of the converter shows that there are four intervals in a half period. In each interval, the state-space equations are obtained. Due to the soft switching of the converter, an exact equation for the Zero Voltage Switching (ZVS) time and the maximum dead time of the inverter switches are presented. The simulation and experimental results obtained from a 10kv, 370w prototype confirm the validity of the theoretical analysis.

Accelerated Durability Analysis of Suspension System (Suspension System의 가속내구해석)

  • 민한기;정종안;양인영
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.5
    • /
    • pp.168-173
    • /
    • 2002
  • The durability test, along with the crashworthiness test, requires the most time and expense in the vehicle development process. The durability design using CAE tools reduces the time required for both the durability test and actual vehicle production. Existing dynamic stress analyses designed fir the analysis of vehicle fatigue mainly calculate the dynamic stress history and fatigue after performing dynamic analysis and stress analysis with relevant software applications and then superpositioning the dynamic load history and stress influence coefficient at each joint. This approach is a complex process, taking into account the flexibility of the parts. It is, however, incapable of giving accurate consideration to the contacts between components, the non-linearity of materials, and tire-road surface interactions. This approach also requires that the analysts have an expertise in software applications of various kinds or an expert in each area must perform the analysis. This requires as a great deal of manpower and time. In order to complement the existing approaches for dynamic stress analysis, this study aims at the following: (1) to suggest the simple and accurate analysis technique which is capable of producing all the possible necessary results; (2) to reduce dramatically the time and manpower needed to construct a model designed to analyze dynamics, quasi-static stress, and fatigue; and (3) to enable an accurate analysis of fatigue by improving the accuracy of dynamic stress. we verify the presented analysis method through durability evaluation of the knuckle of passenger car.

Gait event detection algorithm based on smart insoles

  • Kim, JeongKyun;Bae, Myung-Nam;Lee, Kang Bok;Hong, Sang Gi
    • ETRI Journal
    • /
    • v.42 no.1
    • /
    • pp.46-53
    • /
    • 2020
  • Gait analysis is an effective clinical tool across a wide range of applications. Recently, inertial measurement units have been extensively utilized for gait analysis. Effective gait analyses require good estimates of heel-strike and toe-off events. Previous studies have focused on the effective device position and type of triaxis direction to detect gait events. This study proposes an effective heel-strike and toe-off detection algorithm using a smart insole with inertial measurement units. This method detects heel-strike and toe-off events through a time-frequency analysis by limiting the range. To assess its performance, gait data for seven healthy male subjects during walking and running were acquired. The proposed heel-strike and toe-off detection algorithm yielded the largest error of 0.03 seconds for running toe-off events, and an average of 0-0.01 seconds for other gait tests. Novel gait analyses could be conducted without suffering from space limitations because gait parameters such as the cadence, stance phase time, swing phase time, single-support time, and double-support time can all be estimated using the proposed heel-strike and toe-off detection algorithm.

Computing input energy response of MDOF systems to actual ground motions based on modal contributions

  • Ucar, Taner
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.263-273
    • /
    • 2020
  • The use of energy concepts in seismic analysis and design of structures requires the understanding of the input energy response of multi-degree-of-freedom (MDOF) systems subjected to strong ground motions. For design purposes and non-time consuming analysis, however, it would be beneficial to associate the input energy response of MDOF systems with those of single-degree-of-freedom (SDOF) systems. In this paper, the theoretical formulation of energy input to MDOF systems is developed on the basis that only a particular portion of the total mass distributed among floor levels is effective in the nth-mode response. The input energy response histories of several reinforced concrete frames subjected to a set of eleven horizontal acceleration histories selected from actual recorded events and scaled in time domain are obtained. The contribution of the fundamental mode to the total input energy response of MDOF frames is demonstrated both graphically and numerically. The input energy of the fundamental mode is found to be a good indicator of the total energy input to two-dimensional regular MDOF structures. The numerical results computed by the proposed formulation are verified with relative input energy time histories directly computed from linear time history analysis. Finally, the elastic input energies are compared with those computed from time history analysis of nonlinear MDOF systems.

A model of predicting performance of Olympic female weightlifters using time series analysis

  • Won, Jin-hee;Cho, In-ho
    • International Journal of Advanced Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.216-222
    • /
    • 2020
  • The purpose of this study was to predict the performance of female weightlifters using time series analysis. Based on this purpose, a time series analysis was used to calculate the performance prediction model for women(58kg) among the domestic women weightlifters who participated in the Olympics. As a result of creating time series data based on 10 years of record and then evaluating the sequential charts of each athlete group, the female athletes' records did not show any seasonality or difference. In addition, after examining the independence of the data through the creation of a time series model, it was shown that the models produced conformed to the criteria for compliance and that there was no difference in the data, but there was a trend. Accordingly, Holt linear trend analysis of the exponential smoothing model was applied. As a result of deriving the prediction model of the athletes through this process, it was found that the women (58kg) who participated in the Olympics continued to improve within the range of 166.11kg to 184.1kg.

Study on the Nonstationary Behavior of Slider Air Bearing Using Reassigned Time -frequency Analysis (재배치 시간-주파수 해석을 이용한 슬라이더 공기베어링의 비정상 거동 연구)

  • Jeong, Tae-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.255-262
    • /
    • 2006
  • Frequency spectrum using the conventional Fourier analysis gives adequate information about the dynamic characteristics of the slider air bearing for the linear and stationary cases. The intermittent contacts for the extremely low flying height, however, generate nonlinear and nonstationary vibration at the instant of contact. Nonlinear dynamic model should be developed to simulate the impulse response of the air bearing during slider-disk contact. Time-frequency analysis is widely used to investigate the nonstationary signal. Several time-frequency analysis methods are employed and compared for the slider vibration signal caused by the impact against an artificially induced scratch on the disk. The representative Wigner-Ville distribution leads to the severe interference problem by cross terms even though it gives good resolution both in time and frequency. The smoothing process improves the interference problem at the expense of resolution. In order to get the results with good resolution and little interference, the reassignment method is proposed. Among others the reassigned Gabor spectrogram shows the best resolution and readability with negligible interference.