• Title/Summary/Keyword: Analysis Reference Frame

Search Result 271, Processing Time 0.022 seconds

ANALYSIS OF FLOW AROUND SHIP USING UNSTRUCTURED GRID (비정렬 격자를 이용한 선체 주위의 유동 해석)

  • Jun, Jae-Hyoung;Lee, Sang-Eui;Kwon, Jae-Woong;Son, Jae-Woo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.187-193
    • /
    • 2011
  • In this report, We compared the actual test with the result of pow calculation and Resistance/Self-propulsion of the ship using STAR-CCM+ which is the commercial Reynolds Averaged Navier-Strokes(RANs) Solver. The calculation model was the KRISO Container Ship and 205K Bulk Carrier of Sungdong shipbuilding company. For this calculation, We used Realizable K-Epsilon model for flaw analysis, VOF method for the free surface creation, Moving Reference Frame method for reducing the POW calculation time, and Sliding Mesh method for Self-Propulsion analysis. Calculation of Resistance and Self-Propulsion includes the free-surface. And all calculations in this report were based on unstructured grids.

  • PDF

A Case Study on the Appropriate Construction Personnel of the Typical Floor of Apattment Frame Construction Using the Queueing Model (대기행렬 모형을 활용한 아파트 골조공사 기준층 인적 자원관리 선정사례에 관한 연구)

  • Lee, JeongWon;Kim, BoHee;Ham, NamHyuk;Kim, JaeJun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.6
    • /
    • pp.3-14
    • /
    • 2022
  • Quantitative analysis of the number of construction workers and construction period can present a new standard for appropriate personnel. This study presents a Queueing model that predicts the execution time of work procedures, the most important factor among work efficiency indicators. During the working cycle of apartment frame construction the same process tends to be repeated the volume of contruction. Based on these characteristics, this study used a Queueing Model and analyzed reference layer cycle of the delayed frame construction. After adjusting the number of people and the construction period, the performance of the model was analyzed and suggested. This study aims to support the decision making of personnel distribution according to the volume of construction by performing a performance analysis of the Queueing Model.

Intervention based on Biomechanical Frame of Reference for Balance and Manual Function: a Single Subject Research (생체역학 모델을 통한 균형능력과 상지기능의 중재: 단일대상연구)

  • Kim, Tae-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.231-239
    • /
    • 2009
  • The purpose of this study was to investigate changes in balance and upper extremity (UE) function associated with reaching training for children with quadriplegic cerebral palsy based on Biomechanical Frame of Reference. The baseline (phase A) lasted one week. The therapeutic protocol consisted of three reaching training (Phase B) for 40 minutes three times a week. Intervention phases lasted 4 weeks. The CMS-70P (Zebris Medizintechnik Gmbh, Germany) was used to evaluate the qualitative changes in UE function and Pediathc Berg Balance Scale was used to test the balance. The observed performance changes seem to be associated with the presence of intervention and suggest that biomechanical training can be a useful intervention to improve not only manual function but also balance.

Numerical Study on the Power-on Effect of a Pusher-propeller Aircraft using CFD (CFD를 이용한 추진식 프로펠러 항공기의 Power-on 효과 해석)

  • Cho, Jeong-Hyun;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.59-66
    • /
    • 2014
  • In the case of a propeller-driven aircraft, power-on effect generated by the propeller has a strong influence on the performance and the stability of an aircraft directly and indirectly. A numerical study on the power-on effect has been performed using the CFD based on the multiple reference frame and sliding mesh model. The power-on effect increases the overall lift and the maximum lift of the aircraft. In addition to lift increment, power-on effect delays the stall of the aircraft. On the other hand, the power-on effect increases the drag significantly and consequently decreases the lift-to-drag ratio of the aircraft. Furthermore, the power-on effect decreases the nose-down pitching moment and consequently decreases the longitudinal static stability of the aircraft. It is expected that the analysis results presented and discussed in this report will be used as an important material for analyzing the aircraft performance and stability and will contribute the development of the propeller-driven aircraft with the pusher propeller.

Numerical Investigation of the Effect of Spacing in Coaxial Propeller Multi-Copter in Hovering (멀티콥터용 동축반전 프로펠러 상하 간격에 따른 제자리 비행 공력 특성에 대한 수치적 연구)

  • Sim, Min-Cheol;Lee, Kyung-Tae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.2
    • /
    • pp.89-97
    • /
    • 2020
  • In this study, a numerical analysis was performed on 26 inch single and coaxial propeller using the ANSYS Fluent 19.0 Solver to analyse the effect of the distance between coaxial propellers as one of the design parameter. The Moving Reference Frame (MRF) method was used for single propeller, while the sliding mesh method was used for a coaxial propeller to analyse the flow field varying with azimuth angle. The thrust and power are decreased as the upper and lower propeller approaching each other. As H/D is increased, interference between the propellers is decreased. According to the flow field variable contour of the coaxial propeller, it appears that the change in aerodynamic performance is due to the loading effect and the tip vortex wake effect.

Analysis and Control of Instantaneous Voltage Compensator Using New Phase Angle Detection Method Synchronized by Positive Sequence of Unbalanced 3-Phase Source (3상 불평형 전원 시스템의 새로운 위상각 검출기법을 이용한 순간전압보상기의 해석 및 제어)

  • 이승요;고재석;목형수;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.3
    • /
    • pp.275-284
    • /
    • 1999
  • Unbalanced source voltage in the 3-phase power system is decomposed into positive, negative and zero sequence c components. Also, assuming there is no neutral path in the system, the zero sequence component is not shown on the l load side. Therefore, in the unbalanced power system without neutral path. it is possible to provide balanced voltage to t the load side by compensating negative sequence component and also to regulate the voltage amplitude by controlling t the positive sequence component. In addition, the symmetrical components due to voltage unbalance can be effectively d detected on the synchronous reference frame by using dlongleftarrowq transformation. In this paper, an algorithm not only c compensating unbalanced source voltage by canceling the negative sequence component on the synchronous reference f frame but also maintaining load voltages constantly is proposed. Also a novel method for phase angle detection s synchronized by positive sequence component under unbalanced source voltage is suggested and this detected phase a angle is used for d-q transformation. The performances and characteristics of the proposed compensating system are a analyzed by simulation and verified through experimental results.

  • PDF

Development and Validation of Virtual Training Content Satisfaction Measurement Tool (가상훈련 콘텐츠 만족도 측정도구 개발 및 타당화)

  • Miseok Yang;Woocheol Kim;Ohyoung Kwon
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.1-11
    • /
    • 2023
  • The purpose of this study is to develop and validate a tool that measures the satisfaction of virtual training learners' use of virtual training content. To this end, 491 copies of the basic questions derived from the satisfaction questions used by the K University Online Lifelong Education Center were used for the final analysis by conducting an online survey of learners who accessed STEP, the K University Online Lifelong Education Center portal. The 491 copies of data finally used were analyzed by methods such as basic question analysis, exploratory factor analysis, reliability analysis, and confirmatory factor analysis. First, in the basic question analysis, there were no questions that exceeded the acceptance criteria of an average of 4 points or more, skewness ±2, and kurtosis ±4. Second, the correlation coefficient for each sub-factor of virtual training content satisfaction derived after exploratory factor analysis was good as r=.682 to .822 (p<.01). The reliability coefficient for each sub-factor is content .849, content utilization .922, System and Operations Support .841, Intention to Continue Utilization .920, the overall reliability is. It was very high at .956 Fifth, as a result of confirmatory factor analysis, the compositional conceptual diagram is. It was .842 to .926, higher than the recommended standard of .7, and the average variance extraction degree. It appears to be .640 to .796, higher than the recommended standard of .5, which can be seen as representative of each constituent concept. As a result of verifying the validity of virtual training learners' content satisfaction recruitment, four factor models were derived: content substance, content utilization, system and operation support, and intention to continue use. This study is meaningful in that it empirically developed a tool to measure content satisfaction of virtual training learners and provided a reference frame and criteria.

Spatial substructure hybrid simulation tests of high-strength steel composite Y-eccentrically braced frames

  • Li, Tengfei;Su, Mingzhou;Sui, Yan
    • Steel and Composite Structures
    • /
    • v.34 no.5
    • /
    • pp.715-732
    • /
    • 2020
  • High-strength steel composite Y-eccentrically braced frame (Y-HSS-EBF) is a novel structural system. In this study, the spatial substructure hybrid simulation test (SHST) method is used to further study the seismic performance of Y-HSS-EBF. Firstly, based on the cyclic loading tests of two single-story single-span Y-HSS-EBF planar specimens, a finite element model in OpenSees was verified to provide a reference for the numerical substructure analysis model for the later SHST. Then, the SHST was carried out on the OpenFresco test platform. A three-story spatial Y-HSS-EBF model was taken as the prototype, the top story was taken as the experimental substructure, and the remaining two stories were taken as the numerical substructure to be simulated in OpenSees. According to the test results, the validity of the SHST was verified, and the main seismic performance indexes of the SHST model were analyzed. The results show that, the SHST based on the OpenFresco platform has good stability and accuracy, and the results of the SHST agree well with the global numerical model of the structure. Under strong seismic action, the plastic deformation of Y-HSS-EBF mainly occurs in the shear link, and the beam, beam-columns and braces can basically remain in the elastic state, which is conducive to post-earthquake repair.

Analysis of Dynamic Response of a Floating Crane and a Cargo with Elastic Booms Based on Flexible Multibody System Dynamics (붐의 탄성효과를 고려한 해상크레인의 유연 다물체 동역학 해석)

  • Park, Kwang-Phil;Cha, Ju-Hwan;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • This study analyzes the dynamic response of a floating crane with a cargo considering an elastic boom to evaluate(or for evaluation of) its flexibility effect on their dynamic response. Flexible multibody system dynamics is applied in order to establish a dynamic equation of motion of the multibody system, which consists of flexible and rigid bodies. In addition, a floating reference frame and nodal coordinates are used to model the boom as a flexible body. The study also simulates the coupled surge, pitch, and heave motions of the floating crane carrying the cargo with three degrees of freedom by numerically solving the equation. Finally, the simulation results of the elastic and rigid booms are comparatively analyzed and the effects of the flexible boom are discussed.

Three-dimensional Rarefied Flows in Rotating Helical Channels (헬리컬 채널내부의 3차원 희박기체유동)

  • Hwang, Y.K.;Heo, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.625-630
    • /
    • 2000
  • Numerical and experimental investigations are peformed for the rarefied gas flows in pumping channels of a helical-type drag pump. Modern turbomolecular pumps include a drag stage in the discharge side, operating roughly in $10^{-2}{\sim}10Torr$. The flow occurring in the pumping channel develops from the molecular transition to slip flow traveling downstream. Two different numerical methods are used in this analysis: the first one is a continuum approach in solving the Navier-Stokes equations with slip boundary conditions, and the second one is a stochastic particle approach through the use of the direct simulation Monte Carlo(DSMC) method. The flow in a pumping channel is three-dimensional(3D), and the main difficulty in modeling a 3D case comes from the rotating frame of reference. Thus, trajectories of particles are no longer straight lines. In the Present DSMC method, trajectories of particles are calculated by integrating a system of differential equations including the Coriolis and centrifugal forces. Our study is the first instance to analyze the rarefied gas flows in rotating frame in the presence of noninertial effects.

  • PDF