DOI QR코드

DOI QR Code

Numerical Study on the Power-on Effect of a Pusher-propeller Aircraft using CFD

CFD를 이용한 추진식 프로펠러 항공기의 Power-on 효과 해석

  • Received : 2013.10.25
  • Accepted : 2013.12.27
  • Published : 2014.01.01

Abstract

In the case of a propeller-driven aircraft, power-on effect generated by the propeller has a strong influence on the performance and the stability of an aircraft directly and indirectly. A numerical study on the power-on effect has been performed using the CFD based on the multiple reference frame and sliding mesh model. The power-on effect increases the overall lift and the maximum lift of the aircraft. In addition to lift increment, power-on effect delays the stall of the aircraft. On the other hand, the power-on effect increases the drag significantly and consequently decreases the lift-to-drag ratio of the aircraft. Furthermore, the power-on effect decreases the nose-down pitching moment and consequently decreases the longitudinal static stability of the aircraft. It is expected that the analysis results presented and discussed in this report will be used as an important material for analyzing the aircraft performance and stability and will contribute the development of the propeller-driven aircraft with the pusher propeller.

프로펠러 추진 항공기의 경우, 프로펠러 power-on 효과는 항공기의 비행성능 및 조종안 정성에 직간접적으로 커다란 영향을 미친다. 본 연구에서는 CFD 기반의 multiple reference frame과 sliding mesh model을 이용하여 power-on 효과가 항공기의 공력특성에 미치는 영향을 해석하였다. 프로펠러 power-on 효과에 의해 양력이 미소하게 증가하고 최대양력이 증가되며 실속이 지연된다. 반면, 프로펠러 power-on 효과에 의해 항력이 크게 증가하여 양항비가 감소된다. 또한, 프로펠러 power-on 효과에 의해 기수내림 피칭 모멘트가 감소하여 종방향 정안정성이 감소된다. 본 연구를 통해 획득한 프로펠러 power-on 해석결과는 항공기 성능 및 조종안정성 해석에 중요한 자료로 활용되어 추진식 프로펠러 항공기 개발에 기여할 수 있을 것으로 기대된다.

Keywords

References

  1. Weich, F. E., Abramson, H. N., "Investigation of Lateral Control near the Stall Analysis for Required Longitudinal Trim Characteristics and Discussion," NACA TN-3677, 1956.
  2. Lee, D. H., Kim, Y. B., Jeon, H. J., and Lee, S. J, "An Experimental Study of the Effects of Power on An Airplane with A Pusher Type Propeller," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 19, No. 2, 1991, pp. 26-36.
  3. Choi, H. J., Park, S. O., Kim, J. S., and Ahn, S. K., "Experimental Investigation of Power Effect on a Pusher-Type Scale Model Airplane," Proceeding of the 1994 KSAS Fall Conference, 1994, pp. 183-187.
  4. Park, H. J., Ryi, J. H., and Choi, J. S., "A Study of Aerodynamic Performance variation of Pusher Type Micro Air Vehicle due to the Propeller and Wing Interference," Proceeding of the 2010 KSAS Spring Conference, 2010, pp. 62-68.
  5. Hur, D. and Ahn, J., "An Experimental Study on the Aerodynamic Influence of the Pusher Propeller on a MAV," Proceeding of the 2010 KSAS Spring Conference, 2010, pp. 69-72.
  6. Rankine, W. J. M., "On the Mechanical Principles of the Action of Propellers," Trans. Inst. Naval Architects, Vol. 6, 1865, pp. 13-39.
  7. Froude, W., "On the Elementary Relation between Pitch, Slip, and Propulsive Efficiency," Trans. Inst. Naval Architects, Vol. 19, 1878, pp. 47-65.
  8. Betz, A., "Schraubenpropeller mit geringstem Energieverlust," Nachrichten d. Kgl. Ges. d. Wissensch. zu Gottingen. Math.-phys. Kl., 1919, pp. 193-217.
  9. Cho, K. C., Kim, H. J., Park, I. J., and Jang, S. B., "Application of CFD in the Analysis of Aerodynamic Characteristics for Aircraft Propellers," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 11, 2012, pp. 917-926. https://doi.org/10.5139/JKSAS.2012.40.11.917
  10. Choi, W., "The Study of Advanced Propeller Blade for Next Generation Turboprop Aircraft Part I. Aerodynamic Design and Analysis," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 40, No. 12, 2012, pp. 1017-1024. https://doi.org/10.5139/JKSAS.2012.40.12.1017
  11. Choi, S. J. and Ahn, J., "A Computational Study on the Aerodynamic Influence of the Pusher Propeller on a MAV (Micro Aerial Vehicle)," Proceeding of the 2009 KSAS Spring Conference, 2009, pp. 108-111.
  12. Kim, S. G. and Joh, C. Y., "CFD Analysis of Tractor-type Aircraft with Power-on Effect," Proceeding of the 2011 KSAS Fall Conference, 2011, pp. 1149-1152.
  13. Park, Y. M., Lee, H. C., Kim, C. W., and Chung, J. D., "Stall Characteristics on Mid-size Turboprop Aircraft," Proceeding of the 2012 KSAS Spring Conference, 2012, pp. 146-150.
  14. Steijl, R. and Barakos, G., "Sliding Mesh Algorithm for CFD Analysis of Helicopter Rotor-Fuselage Aerodynamics," International Journal for Numerical Methods in Fluids, Vol, 58, 2008, pp. 527-549. https://doi.org/10.1002/fld.1757
  15. ANSYS FLUENT 12.0 User's Guide, ANSYS, Inc., 2009.
  16. Doenhoff, A. E. and Abbott, F. T., "The Langley Two-Dimensional Low-Turbulence Pressure Tunnel," NACA TN-1283, 1947.

Cited by

  1. Shift Steering Control of 2-axis ARM Helicopter based on a Neural Network vol.21, pp.7, 2015, https://doi.org/10.5302/J.ICROS.2015.15.0033
  2. Performance Evaluation of Propeller for High Altitude by using Experiment and Computational Analysis vol.43, pp.12, 2015, https://doi.org/10.5139/JKSAS.2015.43.12.1035