• Title/Summary/Keyword: Analysis Automation

Search Result 1,486, Processing Time 0.036 seconds

Resonant Tank Design Considerations and Implementation of a LLC Resonant Converter with a Wide Battery Voltage Range

  • Sun, Wenjin;Wu, Hongfei;Hu, Haibing;Xing, Yan
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1446-1455
    • /
    • 2015
  • This paper illustrates resonant tank design considerations and the implementation of a LLC resonant converter with a wide battery voltage range based on the fundamental harmonic approximation (FHA) analysis. Unlike the conventional design at zero load, the parameter K (the ratio of the transformer magnetizing inductor Lm to the resonant inductor Lr) of the LLC converter in this paper is designed with two charging points, (Vo_min, Io_max1) and (Vo_max, Io_max2), according to the battery charging strategy. A 2.9kW prototype with an output voltage range of 36V to 72V dc is built to verify the design. It achieves a peak efficiency of 96%.

Research on Ship to Ship Channel Characteristics Based on Effect of Antenna Location in Inland Waterway at 5.9 GHz

  • Zhang, Jing;Li, Changzhen;Du, Luyao;Chen, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3350-3365
    • /
    • 2020
  • A considerable literature has recently grown up on the theme of ship wireless communications. However, much of the research up to now has been descriptive in the offshore area. There has been little quantitative analysis of wireless communication in inland waterways, which has received considerable attention lately. Until now, only the effects on inland river environment are examined. What is less clear is the nature of channel change caused by the antenna movement. Here we explore the moving ship-to-fixed-ship fading characteristics at 5.9 GHz for an inland waterway in the city center of China. The ship motion trajectory is designed in order to determine the effect of changes in the antenna position. We evaluate the channel fading characteristics of inland waterway, which are highly correlated with the distance between transmitter and receiver. We demonstrate that the line-of-sight component, as well as the components from multipath with obstruction reflections, contributes largely to the mean power gap. Our findings reveal critical ship-to-ship characteristics in inland waterway, which definitely contribute to the field of ship wireless communications.

An Interleaved Converter for 12-pulse Rectifier Harmonic Suppression

  • Li, Yuan;Yang, Wei;Cang, Sheng;Yang, Shiyan
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1349-1362
    • /
    • 2017
  • In order to further improve the harmonic suppression capability of conventional 12-pulse rectifiers, this paper proposes a low harmonic 12-pulse rectifier using an Active Inter-Phase Reactor (AIPR). Through a detailed analysis of the relationship between the input current, output current and circulating current of the DC side, the mechanism where the AC grid side current harmonics can be suppressed by the DC side circulating current is revealed. On this basis, an interleaved APFC controlled by a DSP is designed and used as an AIPR along with an interphase reactor. A simulation is carried out with MATLAB/Simulink and an experiment is performed on a 9-kVA prototype. The obtained results verify the feasibility and validity of the proposed approach. Compared with a traditional 12-pulse rectifier, the THD can be reduced to 1/5 of the original value, and the capacity of the AIPR is only 2% of the load power. Thus, it is suitable for high-power applications.

Mathematical Model of Two-Degree-of-Freedom Direct Drive Induction Motor Considering Coupling Effect

  • Si, Jikai;Xie, Lujia;Han, Junbo;Feng, Haichao;Cao, Wenping;Hu, Yihua
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1227-1234
    • /
    • 2017
  • The two-degree-of-freedom direct drive induction motor, which is capable of linear, rotary and helical motion, has a wide application in special industry such as industrial robot arms. It is inevitable that the linear motion and rotary motion generate coupling effect on each other on account of the high integration. The analysis of this effect has great significance in the research of two-degree-of-freedom motors, which is also crucial to realize precision control of them. The coupling factor considering the coupling effect is proposed and addressed by 3D finite element method. Then the corrected mathematical model is presented by importing the coupling factor. The results from it are verified by 3D finite element model and prototype test, which validates the corrected mathematical model.

A Neural Network Aided Kalman Filtering Approach for SINS/RDSS Integrated Navigation

  • Xiao-Feng, He;Xiao-Ping, Hu;Liang-Qing, Lu;Kang-Hua, Tang
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.491-494
    • /
    • 2006
  • Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the horizontal positioning accuracy of the new approach is 40.62 m (1 ${\sigma}$), which is better than velocity-feedback-based KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to the applications of SINS/RDSS integrated systems.

  • PDF

Modulation, Harmonic Analysis, and Balancing Control for a New Modular Multilevel Converter

  • Li, Binbin;Zhang, Yi;Wang, Gaolin;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.163-172
    • /
    • 2016
  • The modular multilevel converter (MMC) has been receiving increased attentions in recent years. The new modular multilevel converter is a derivative topology from the traditional MMC in which the number of sub-modules (SMs) necessitated by each phase can be reduced by one. This paper presents a phase-shifted carrier pulse-width modulation (PSC-PWM) for the new MMC with an optimal phase-shifted angle to suppress the harmonics of the output voltage. Further, the harmonic features when the capacitor voltage of the middle SM is selected as two different values are also investigated. Moreover, in order to avoid introducing an unnecessary dc offset current at the ac terminals of the new MMC, a novel capacitor voltage balancing scheme is proposed by adjusting the amplitude of the reference signals rather than the offset. Finally, the validity and effectiveness of the proposed modulation and balancing schemes have been verified by experimental results based on a three-phase prototype of the new MMC.

Novel Passive Snubber Suitable for Three-Phase Single-Stage PFC Based on an Isolated Full-Bridge Boost Topology

  • Meng, Tao;Ben, Hongqi;Wang, Daqing;Song, Jianfeng
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.264-270
    • /
    • 2011
  • In this paper a novel passive snubber is proposed, which can suppress the voltage spike across the bridge leg of the isolated full-bridge boost topology. The snubber is composed of capacitors, inductors and diodes. Two capacitors connected in series are used to absorb the voltage spike and the energy of each capacitor can be transferred to the load during one switching cycle by the resonance of the inductors and capacitors. The operational principle of the passive snubber is analyzed in detail based on a three-phase power factor correction (PFC) converter, and the design considerations of both the converter and the snubber are given. Finally, a 3kW laboratory-made prototype is built. The experimental results verify the theoretical analysis and evaluations. They also prove the validity and feasibility of the proposed methods.

An Improved Model Predictive Direct Torque Control for Induction Machine Drives

  • Song, Wenxiang;Le, Shengkang;Wu, Xiaoxin;Ruan, Yi
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.674-685
    • /
    • 2017
  • The conventional model predictive direct torque control (MPDTC) method uses all of the voltage vectors available from a two level voltage source inverter for the prediction of the stator flux and stator current, which leads to a heavy computational burden. This paper proposes an improved model predictive direct torque control method. The stator flux predictive controller is obtained from an analysis of the relationship between the stator flux and the torque, which can be used to calculate the desired voltage vector based on the stator flux and torque reference. Then this method only needs to evaluate three voltage vectors in the sector of the desired voltage vector. As a result, the computational burden of the conventional MPDTC is effectively reduced. The time delay introduced by the computational time causes the stator current to oscillate around its reference. It also increases the current and torque ripples. To address this problem, a delay compensation method is adopted in this paper. Furthermore, the switching frequency of the inverter is significantly reduced by introducing the constraint of the power semiconductor switching number to the cost function of the MPDTC. Both simulation and experimental results are presented to verify the validity and feasibility of the proposed method.

RPA Analysis and Implications in the Era of the 4th Industrial Revolution (4차 산업혁명 시대의 RPA 분석과 시사점)

  • Kang, Ji-won;Kim, Hee-kyung;Choi, Min-Gi;Choi, Hun;Yoo, Seong-Yeol
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.317-319
    • /
    • 2021
  • Throughout the era of the fourth industrial revolution, automation is becoming more important. Recently, business automation solutions using Robotic Process Automation (RPA) are also attracting attention. Compared to the rapidly growing RPA market, related IT technologies have not been widely available and problems such as manpower shortage are growing. Therefore, this study identifies the definition and characteristics of RPA, classification by type of operation, and the impact of RPA solutions and introduction, which have significant impact on the enterprise in a short period of time. In addition, we present the development direction of RPA through implications.

  • PDF

Fully Adaptive Feedforward Feedback Synchronized Tracking Control for Stewart Platform Systems

  • Zhao, Dongya;Li, Shaoyuan;Gao, Feng
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.689-701
    • /
    • 2008
  • In this paper, a fully adaptive feedforward feedback synchronized tracking control approach is developed for precision tracking control of 6 degree of freedom (6DOF) Stewart Platform. The proposed controller is designed in decentralized form for implementation simplicity. Interconnections among different subsystems and gravity effect are eliminated by the feedforward control action. Feedback control action guarantees the stability of the system. The gains of the proposed controller can be updated on line without requiring any prior knowledge of Stewart Platform manipulator. Thus the control approach is claimed to be fully adaptive. By employing cross-coupling error technology, the proposed approach can guarantee both of position error and synchronization error converge to zero asymptotically. Because the actuators work in synchronous manner, the tracking performances are improved. The corresponding stability analysis is also presented in this paper. Finally, simulation is demonstrated to verify the effectiveness of the proposed approach.