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Abstract 
 
 Kalman filtering (KF) is hard to be applied to the SINS (Strap-down Inertial Navigation System)/RDSS (Radio 
Determination Satellite Service) integrated navigation system directly because the time delay of RDSS positioning in 
active mode is random. BP (Back-Propagation) Neuron computing as a powerful technology of Artificial Neural 
Network (ANN), is appropriate to solve nonlinear problems such as the random time delay of RDSS without prior 
knowledge about the mathematical process involved. The new algorithm betakes a BP neural network (BPNN) and 
velocity feedback to aid KF in order to overcome the time delay of RDSS positioning. Once the BP neural network 
was trained and converged, the new approach will work well for SINS/RDSS integrated navigation. Dynamic vehicle 
experiments were performed to evaluate the performance of the system. The experiment results demonstrate that the 
horizontal positioning accuracy of the new approach is 40.62 m (1σ ), which is better than velocity-feedback-based 
KF. The experimental results also show that the horizontal positioning error of the navigation system is almost linear 
to the positioning interval of RDSS within 5 minutes. The approach and its anti-jamming analysis will be helpful to 
the applications of SINS/RDSS integrated systems. 
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1. Introduction 

 
A double-star positioning system using two geostationary 

satellites providing Radio Determination Satellite Service(RDSS) 
has been established in China since 2000. RDSS combines rapid 
positioning and short message communication together. But not 
as GPS and GLONASS, RDSS works in the mode of active 
positioning, that is, the positioning function is calculated by the 
center station and transferred by geostationary satellites. The 
obvious shortcoming of this working mode is that there is a time 
delay between the positioning request and the answer [1]. The 
time delay varies random with time so that it is hard to be 
predicted and compensated and causes larger errors while the 
user’s dynamic increases. Another shortcoming of active mode is 
that the capacity of the system is limited by the control center’s 
calculation and communication ability, which does not make so 
many users share the service at the same time. 

A SINS is a self-contained positioning and attitude device. In 
other words, it meets the all-environment requirement. The 
primary advantage of using an INS for land vehicle navigation 
applications is that velocity and position of the vehicle can be 
provided with abundant dynamic information and excellent short 
term performance. 

The last two decades have seen an increasing trend in the use 
of integrated INS and GPS for a variety of positioning and 
navigation applications. Chinese scholars such as ZHAO 
Long[2], LIU Zhun[3], LIN Yueyun[4], HU Guangfeng[5] etc, 
have researched RDSS/SINS integrated navigation algorithms. 

In this paper, new techniques for RDSS/SINS integration 
based on artificial intelligent are proposed. Firstly, the proposed 
approach adopts the feedback of velocity to impair the time delay 
of RDSS. Secondly, BPNN is trained to eliminate the residual 
time delay and other noise. With the experimental data, the 
accuracy of the proposed approach is better than the accuracy of 

velocity-feedback-based KF. The anti-jamming of the system 
will be analyzed. 

 
 

2. Design of the BPNN-aided KF 
 
2.1 Inertial state dynamic error model 

 
IMU mechanization is the process of solving the navigation 

states PVA (position, velocity and attitude) from the 
measurements of gyros and accelerometers. The axes of the 
navigation frame are aligned with the directions of east, north 
and the local vertical (up). The direction of the local vertical is 
not stable in IMU mechanization [6]. And the receiver of RDSS 
only exports the latitude, longitude and no information of height. 
So the direction of the local vertical is not considered. The 
inertial sensor errors (mainly gyros biases) are very important 
and will cause the PVA solution to diverge quickly. Therefore, 
the state vector of the dynamic error model is X in local level 
frame. 

 
      [ ], , , , , , , , , T
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where 

,Lδ δλ    position (latitude and longitude) error states 
,E NV Vδ δ     velocity (east and north) error states 

, ,E N Uφ φ φ     attitude (east, north and up) error states 
, ,E N Uε ε ε     gyro (east, north and up) drift vectors 
The state vector to be solved consists of 10 states adding the 

gyro residuals. The gyro drift is regarded as Gaussian white 
noise. Inertial state dynamic error model can be written in the 
following form: 

 
( ) ( ) ( ) ( ) ( )X t F t X t G t W t= ⋅ + ⋅         (2) 



where 
X  error state vector of inertial navigation whose 

elements include two position errors, two velocity 
errors, three attitude errors and three gyro drift terms, 

F  state transition matrix, see reference[6] for details, 
G  a rectangular matrix, 
W  a zero-mean Gaussian white noise vector. 

 
2.2 Kalman filtering 

 
The observation equations should be presented in the 

condition of time synchronization. Actually, the time delay ( tΔ ) 
of RDSS is more than 0.8 seconds. It is random and hard to be 
modeled because RDSS works in active positioning mode. The 
observation equations can be represented in the following form: 

 
             Z H X V= ⋅ +                     (3)
 
where 

[ ], T
I B I BZ L L λ λ= − −  observation vector, 

( , )I IL λ     position calculated by SINS, 

[ ]2 2 2 80H I × ×=  design matrix relating the system update 
measurements to the system error states, 

V  vector of update measurements random 
noise. 

 

           /B B NL L V t R′= + Δi                    (4)

           /B B EV t Rλ λ ′= + Δi                    (5)

 
where 
( , )B BL λ     position synchronized to SINS position, 

( , )B BL λ′ ′     position by RDSS, 
R     earth radius, 

tΔ     estimated time delay of RDSS. 
We can estimate the time delay ( tΔ ) of RDSS by recording 

both the time when RDSS receiver asks for the positioning and 
the time when RDSS receiver accepts the position solution from 
the centre station through the satellites.  

A KF is adopted for the optional estimation of the SINS error 
state vector components. The state-space error model consists of 
discrete equations 2 and 3. Therefore, the discrete KF algorithm 
can be summarized as [7]: 
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where 

, 1
ˆ

k kX −  predicted estimate of the system error state vector at 
time kt , 

,
ˆ

k kX  updated estimate of the system error state vector at 
time kt , 

, 1k kP −  covariance matrix of , 1
ˆ

k kX − , 

,k kP  covariance matrix of ,
ˆ

k kX , 

kK  Kalman gain matrix, 

1kQ −  covariance matrix of the system input noise 

kR  covariance matrix of the measurement noise. 
 
2.3 BPNN-aided KF 

 
 Neural network is a nonlinear dynamics system, which 

possesses strong fault-tolerance performance and robustness in 
addition to adaptive learning ability [8]. BP neural network is 
used most abroad in so many applications as a kind of neural 
network. The proposed approach takes good advantage of BPNN 
to aid KF in order to overcome the influence of time delay of 
RDSS, time synchronization of the hybrid navigation system and 
many other nonlinear factors.  

Figure 1 illustrates the structure of the BPNN-aided KF. 
 

 
 

Figure 1.  Structure of the BPNN-aided KF 
 
The BPNN-aided KF estimates the state vector by using a 

form of feedback control. In this case, velocity vector is as a 
feedback to correct the position error of RDSS, which is 
represented by equations (4) and (5). INS error will be corrected 
every filtering cycle. 

Jiao Licheng [9] had proved in theory that 3 layers of neural 
network can realize arbitrarily complicated nonlinear mapping 
problems. In theory, the more layers network contains, better 
accuracy will be obtained. But in fact, random noise and 
inference will be aggrandized as systemic errors if the layers are 
too much. In this case, neural network may not work well, or 
even be dispersible. In this paper, we use 3-layer BP neural 
network to aid KF where the vectors , 1

ˆ
k k k kZ H X −− , 

, , 1
ˆ ˆ

k k k kX X −− according to the position information (4 dimensions) 
are as input layer and the position error (2 dimensions) is as 
destination layer. The number of hidden layers is 7. The decision 
function of hidden layers is usually nonlinear and adopted as a 
TANSIG function provided by MATLAB toolbox. To simplify 
the BPNN, linear transfer function is adopted as PURELIN 
function in output layer. 

 
2.4 BP Algorithm 
 

BP algorithm is used to train the neural network of which the 
learning process includes mode forward and error reverse.  

The standard BP algorithm is a simple, fastest declining static 
optimization algorithm. The weight vector ( )kω  is modified as 
presented as following. 
 

          ( 1) ( ) ( )k k x kω ω η δ+ = + i                (7)
 
where 

( ) / ( )x k E kδ ω= −∂ ∂   negative gradient at time k , 
η    a momentum factor and 0 1η≤ ≤ .  

In this case, oscillation will occur frequently in the process of 
study. The network converges slowly. 



In this paper, Levenberg-Marquardt (L-M) algorithm is 
adopted based on the standard BP algorithm and Gauss-Newton 
algorithm. It takes advantage of fast convergence of Gauss-
Newton algorithm and global optimization of the standard BP 
algorithm. The equation (7) is improved to the following form. 

 
1( 1) ( ) [ ] ( )T Tk k J J I J e xω ω η λ −+ = − +i           (8)

 
where 

( )e x  error vector of the network output, 
J  Jacobian matrix of ( )e x , 
λ  coefficient and 0λ ≥ , 
I  identity matrix. 

λ  is an adaptive coefficient. If the sum of error decreases, let 
/λ λ ϕ= . If the sum of error increased, let λ λ ϕ= i . ϕ  is a 

factor and satisfies 0ϕ > . If 0λ = , the L-M algorithm equals 
the Gauss-Newton algorithm. If λ → +∞ , the L-M algorithm is 
close to the standard BP algorithm. We can increase the step by 
ϕ  times when the convergence is slowly while decrease the step 
by ϕ  times when extremum is in a local area. 

Based on the L-M algorithm, the parameters of the BPNN in 
this paper are represented as Table 1. 

Table 1.  Parameters of the BPNN 

Number of input nerve cell: 4 Number of output nerve cell: 2
Training epochs:  100 Goal: 0.02 

λ : 0.001 ϕ : 10 
 
3. Experiments 

 
3.1 Experimental system 

 
The experimental system consists of an automobile, RDSS 

receiver, RDSS antenna, INS, DGPS, industrial computer and 
power supply. The accuracy of RDSS positioning is 100 m and 
the minimum interval of positioning is 60 s. INS is a navigation-
grade system. The reference position of the experiments is 
provided by DGPS (Ashetech GG24) of which the position 
accuracy is better than 2 m and position frequency is 1 Hz.  

 
3.2 Experimental trajectory 
 

Experiments were made in a highway in the suburb of 
Changsha on Oct 9th, 2005. Figure 2 illustrates the experimental 
trajectory.  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Experimental trajectory 
 
The trajectory is given by DGPS positioning data. The 

automobile run along the trajectory from the start point to the 
end point and then turned around back to the start point for three 

turns. The velocity of the automobile is about 50 km/h. 
 

3.3 Experimental results 
 
The samples of INS are every 0.01 s, but the samples of 

RDSS are at least every 60 s. The cycle of BPNN-aided KF is at 
least 60 s in this paper. To build and train the BPNN, we have 
sampled the data of INS, RDSS and DGPS firstly. Then we 
evaluate the algorithm offline. 

In figure 3, we can see the variation of position errors with 
respect to time in the BPNN-aided KF approach. The trained 
BPNN can perform its task well and stably. Figure 4 shows the 
position errors in the velocity-feedback-based KF case. The 
horizontal position accuracy of the BPNN-aided KF is 40.62 m 
while that of the velocity-feedback-based KF is 46.75 m. It is 
obvious that the performance of the new approach yields 
significant improvements in performance with reduced RMS 
errors up to about 13% compared with the velocity-feedback-
based KF.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Position error of BPNN-aided KF 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Position error of velocity-feedback-based KF 
 

 
In order to estimate the performance of the SINS/RDSS 

integrated navigation system with respect to the positioning 
interval of RDSS, we analyze the accuracy with different interval 
of RDSS such as 120 s, 180 s, 240 s, 300 s (Table 2). Obviously, 
longer the interval is, worse the accuracy will be. 

In Table 2, RMS represents the horizontal error of 
SINS/RDSS system and is calculated by the following equation.  

 
2 2RMS north east= +              (9)

 
Figure 5 clearly shows that the horizontal positioning error of 

the SINS/RDSS integrated navigation system is almost linear to 
the positioning interval of RDSS within 5 minutes. 
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Table 2.  Error comparison of SINS/RDSS with different 
interval of RDSS positioning. 

 

Error /m 60 s 120 s 180 s 240 s 300 s 

North 35.96 73.36 106.07 137.11 166.68 

East 18.89 31.56 42.76 53.55 68.14 

RMS 40.62 79.86 114.36 147.20 180.07 
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Figure 5. Horizontal error with interval time of RDSS 
position 

 
 
4. Conclusion 
 

In this paper we provided an exact solution for the 
SINS/RDSS integrated navigation system based on BP neural 
network and KF. Experimental results show that the application 
of neural network methodology is feasible in the combination of 
KF and the proposed approach works better than traditional 
methods. The approach and its anti-jamming analysis based on 
experimental data will be helpful to the application of 
SINS/RDSS integrated navigation systems. 
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