• 제목/요약/키워드: Amyloid β

검색결과 125건 처리시간 0.024초

말초 아밀로이드 베타 원천으로서의 혈소판과 알츠하이머병의 혈액 바이오마커로서의 가능성 (Platelets as a Source of Peripheral Aβ Production and Its Potential as a Blood-based Biomarker for Alzheimer's Disease)

  • 강재선;최윤식
    • 생명과학회지
    • /
    • 제30권12호
    • /
    • pp.1118-1127
    • /
    • 2020
  • 알츠하이머병은 점진적인 신경세포의 손상과 이로 인해 인지기능 장애를 유발하는 질병이다. 이 질환은 현재로서는 치료할 수 있는 질환이 아니고 진행을 멈추게 할 수 있는 방법이 없다. 그러나 초기에 알츠하이머병을 치료하는 것이 가장 효과적이므로 초기 진단은 증상을 관리할 수 있는 가장 좋은 기회를 제공할 수 있다. 알츠하이머병을 진단하기 위한 바이오마커로는 아밀로이드 베타(Aβ), 병적인 타우, 그리고 신경퇴화가 있고, Aβ의 축적, 인산화 타우는 뇌척수액이나 양전자 방출 단층촬영술을 통해 분석할 수 있다. 그러나 뇌척수액의 채취는 매우 침습적이고 양전자 방출 단층촬영술은 전문적인 고가의 장비가 필요하다. 지난 수십년 동안 빠르고 최소한의 침습성을 가진 바이오마커 분석법을 개발하기 위하여 혈액에 기반한 바이오마커 분석 기술이 연구되어 왔다. 그 중 주목할 만 한 발견이 혈장에서 Aβ의 주요 원천으로 혈소판과의 관련성이다. 아밀로이드 베타는 혈액-뇌 장벽을 통과 할 수 있고 정상 상태에서는 뇌와 혈액 간 평형을 이루게 된다. 흥미롭게도, 여러 임상시험 결과 혈장에서 Aβ42/Aβ40 비율이 가벼운 인지장애 질환과 알츠하이머병에서 감소되어 있는 것을 증명하였다. 종합하면, 이러한 최근의 발견들은 침습성을 최소화한 알츠하이머병의 초기 진단 기술을 개발하는 데 이용될 수 있다. 본 총설에서, 저자들은 알츠하이머병의 바이오마커에 대한 최근 연구결과들, 특히 말초에서 Aβ를 생산하는 혈소판의 역할과 혈액 기반 바이오마커로서의 개발 가능성에 대해 고찰하였다.

Korean Red Pine (Pinus densiflora) Bark Extract Attenuates Aβ-Induced Cognitive Impairment by Regulating Cholinergic Dysfunction and Neuroinflammation

  • Go, Min Ji;Kim, Jong Min;Kang, Jin Yong;Park, Seon Kyeong;Lee, Chang Jun;Kim, Min Ji;Lee, Hyo Rim;Kim, Tae Yoon;Joo, Seung Gyum;Kim, Dae-Ok;Heo, Ho Jin
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권9호
    • /
    • pp.1154-1167
    • /
    • 2022
  • In this study, we investigated the anti-amnesic effect of Korean red pine (Pinus densiflora) bark extract (KRPBE) against amyloid beta1-42 (Aβ1-42)-induced neurotoxicity. We found that treatment with KRPBE improved the behavioral function in Aβ-induced mice, and also boosted the antioxidant system in mice by decreasing malondialdehyde (MDA) content, increasing superoxide dismutase (SOD) activities, and reducing glutathione (GSH) levels. In addition, KRPBE improved the cholinergic system by suppressing reduced acetylcholine (ACh) content while also activating acetylcholinesterase (AChE), regulating the expression of choline acetyltransferase (ChAT), postsynaptic density protein-95 (PSD-95), and synaptophysin. KRPBE also showed an ameliorating effect on cerebral mitochondrial deficit by regulating reactive oxygen species (ROS), mitochondrial membrane potential (MMP) and ATP levels. Moreover, KRPBE modulated the expression levels of neurotoxicity indicators Aβ and phosphorylated tau (p-tau) and inflammatory cytokines TNF-α, p-IκB-α, and IL-1β. Furthermore, we found that KRPBE improved the expression levels of neuronal apoptosis-related markers BAX and BCl-2 and increased the expression levels of BDNF and p-CREB. Therefore, this study suggests that KRPBE treatment has an anti-amnestic effect by modulating cholinergic system dysfunction and neuroinflammation in Aβ1-42-induced cognitive impairment in mice.

Role of soy lecithin combined with soy isoflavone on cerebral blood flow in rats of cognitive impairment and the primary screening of its optimum combination

  • Hongrui Li;Xianyun Wang;Xiaoying Li;Xueyang Zhou;Xuan Wang;Tiantian Li;Rong Xiao;Yuandi Xi
    • Nutrition Research and Practice
    • /
    • 제17권2호
    • /
    • pp.371-385
    • /
    • 2023
  • BACKGROUND/OBJECTIVES: Soy isoflavone (SIF) and soy lecithin (SL) have beneficial effects on many chronic diseases, including neurodegenerative diseases. Regretfully, there is little evidence to show the combined effects of these soy extractives on the impairment of cognition and abnormal cerebral blood flow (CBF). This study examined the optimal combination dose of SIF + SL to provide evidence for improving CBF and protecting cerebrovascular endothelial cells. MATERIALS/METHODS: In vivo study, SIF50 + SL40, SIF50 + SL80 and SIF50 + SL160 groups were obtained. Morris water maze, laser speckle contrast imaging (LSCI), and hematoxylin-eosin staining were used to detect learning and memory impairment, CBF, and damage to the cerebrovascular tissue in rat. The 8-hydroxy-2'-deoxyguanosine (8-OHdG) and the oxidized glutathione (GSSG) were detected. The anti-oxidative damage index of superoxide dismutase (SOD) and glutathione (GSH) in the serum of an animal model was also tested. In vitro study, an immortalized mouse brain endothelial cell line (bEND.3 cells) was used to confirm the cerebrovascular endothelial cell protection of SIF + SL. In this study, 50 µM of Gen were used, while the 25, 50, or 100 µM of SL for different incubation times were selected first. The intracellular levels of 8-OHdG, SOD, GSH, and GSSG were also detected in the cells. RESULTS: In vivo study, SIF + SL could increase the target crossing times significantly and shorten the total swimming distance of rats. The CBF in the rats of the SIF50 + SL40 group and SIF50 + SL160 group was enhanced. Pathological changes, such as attenuation of the endothelium in cerebral vessels were much less in the SIF50 + SL40 group and SIF50 + SL160 group. The 8-OHdG was reduced in the SIF50 + SL40 group. The GSSG showed a significant decrease in all SIF + SL pretreatment groups, but the GSH showed an opposite result. SOD was upregulated by SIF + SL pretreatment. Different combinations of Genistein (Gen)+SL, the secondary proof of health benefits found in vivo study, showed they have effective anti-oxidation and less side reaction on protecting cerebrovascular endothelial cell. SIF50 + SL40 in rats experiment and Gen50 + SL25 in cell test were the optimum joint doses on alleviating cognitive impairment and regulating CBF through protecting cerebrovascular tissue by its antioxidant activity. CONCLUSIONS: SIF+SL could significantly prevent cognitive defect induced by β-Amyloid through regulating CBF. This kind of effect might be attributed to its antioxidant activity on protecting cerebral vessels.

알츠하이머성 치매에서 혈액 진단을 위한 바이오마커 (Blood Biomarkers for Alzheimer's Dementia Diagnosis)

  • 박창은
    • 대한임상검사과학회지
    • /
    • 제54권4호
    • /
    • pp.249-255
    • /
    • 2022
  • 알츠하이머병은 주요한 공중보건 문제로 나타나며 연구분야에서도 최우선적인 과제이다. 알츠하이머병(AD)에서 뇌척수액(CSF)을 활용한 바이오마커인 아밀로이드-β(Aβ42), 총 타우(T-tau) 및 인산화 타우(P-tau)가 알츠하이머병 병태생리학의 핵심 요소를 반영한다. 임상 연구 및 새로운 측정법을 통한 임상적으로 활용되는 진단은 전임상 알츠하이머병에 대해 민감적이고 특이적이며 신뢰할 수 있는 바이오마커의 발굴, 뿐만 아니라 치매의 조기 발견 및 감별 진단과 질병 진행 모니터링에 도움이 되는 검사법의 개발에도 중요할 것이다. 증상 전 단계에서 AD의 조기 발견은 시냅스 손상 및 신경 손실이 확장되기 전에 개입이 수행되기 때문에 치료 개입을 조기에 가능하게 하고 치료 성공을 위한 가능성이 더 큰 좋은 기회로 이어진다. 따라서 새롭고 접근하기 쉽고 비용이 적게 드는 바이오마커를 임상 진단에 활용하는 것이 매우 유익할 것이다. 치매의 초기단계에 일어나는 병리학적 변화나, 질병의 진행정도를 추적할 수 있는 다양한 바이오마커들의 진단방법을 찾는 일은 치료제 개발처럼 중요한 연구 분야이다. 조기진단을 위해 임상증상을 대변하거나(surrogate marker), 증상이 나타나기 이전 상태를 측정할 수 있는 새로운 진단마커가 필요한 상황이다. 이러한 이유로 인지기능 저하정도를 측정하여 정상, 경도인지장애(mild cognition impairment, MCI) 및 전임상(preclinical) 상태의 사람을 판별할 수 있는 바이오마커(biomarker)를 활용한 조기진단법 개발의 중요성이 강조되고 있다.

An In Vitro and In Vivo Cholinesterase Inhibitory Activity of Pistacia khinjuk and Allium sativum Essential Oils

  • Ghajarbeygi, Peyman;Hajhoseini, Ashraf;Hosseini, Motahare-Sadat;Sharifan, Anoosheh
    • 대한약침학회지
    • /
    • 제22권4호
    • /
    • pp.231-238
    • /
    • 2019
  • Objectives: Alzheimer's disease (AD), an overwhelming neurodegenerative disease, has deleterious effects on the brain that consequently causes memory loss and language impairment. This study was intended to investigate the neuroprotective activity of the two essential oils (EOs) from Iranian Pistacia khinjuk (PK) leaves and Allium sativum (AS) cloves against β-Amyloid 25-35 (Aβ25-35) induced elevation of cholinesterase enzymes in AD. Methods: The EOs of PK (PKEO) and AS (ASEO) were prepared and analyzed in terms of extraction yield, phenolic content, and cholinergic markers in vitro. Moreover, both were administered orally to adult male Wistar rats at concentrations of 1, 2, and 3%. The inhibitory potential of PKEO and ASEO was compared with Donepezil (0.75 mg/kg) against the high activities of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes. Results: PKEO reached an inhibition rate of 83.6% and 81.4% against AChE and BChE, respectively. ASEO had lower anti-cholinesterase activity (65.4% and 31.5% for the inhibition AChE and BChE). PKEO was found to have more phenolic content than ASEO. A significantly positive correlation was observed between the total phenolics and anti-cholinesterase potential. In rats, both EOs decreased the enzyme activity in a concentration-dependent manner. As compared with Donepezil, the significant difference in the AChE and BChE inhibition occurred as rats were treated with PKEO 3% (p < 0.05). Conclusion: It could be concluded that PKEO and ASEO are potent inhibitors of AChE and BChE in rats that hold promise to be used for the treatment of AD.

소풍보심탕이 고혈압, 혈전 및 뇌진탕에 미치는 영향 (Study on the Effect of Sopungbosim-tang on Hypertension, Thrombosis and Brain damage)

  • 배경일;김동희;이용구;김윤식;설인찬
    • 동의생리병리학회지
    • /
    • 제16권2호
    • /
    • pp.245-256
    • /
    • 2002
  • This studt was investigated to prove the effect of SPBST on the hypertension, the thrombosis and the brain damage. The results were as follows; 1. SPBST affected the htpertension as adepressant, but insignificant. 2. SPBST decreased significantly dopamine, aldosterone but ineffective on the epinephrine, norepinephrine and renin activity. 3. SPBST increased the NO product but insignificant. 4. SPBST had a death suppression effect by 50% in pulmonary thrombosis inducement experiment and activated slightly on the fibrinolytic activity. 5. SPBST suppressed significantly platelet diminution and prolonged insignificantly PT and APTT. 6. On the measure of the blood flow rate induced by the thrombus, in vivo SPBST accelerated the blood flow rate, in vitro insignificant. 7. SPBST had no toxicity on the PC12 cell and B103 cell induced by amyloid β protein (-35) and a protective effect, in proportion to the density. 8. SPBST decreased significantly coma duration time in a Infatal dose of KCN and showed 50% of survival rate in a fatal dose. 9. SPBST decreased significantly ischemic area and edema incited by the MCA blood flow block. These results indicate that SPBST can be used in hypertension, the thrombosis, the brain damage, the ischemic cerebral infarction and the acute stage of the brain damage. Further study will be needed about the functional mechanism and etc.

Gintonin stimulates autophagic flux in primary cortical astrocytes

  • Rahman, Md. Ataur;Hwang, Hongik;Nah, Seung-Yeol;Rhim, Hyewhon
    • Journal of Ginseng Research
    • /
    • 제44권1호
    • /
    • pp.67-78
    • /
    • 2020
  • Background: Gintonin (GT), a novel ginseng-derived exogenous ligand of lysophosphatidic acid (LPA) receptors, has been shown to induce cell proliferation and migration in the hippocampus, regulate calcium-dependent ion channels in the astrocytes, and reduce β-amyloid plaque in the brain. However, whether GT influences autophagy in cortical astrocytes is not yet investigated. Methods: We examined the effect of GT on autophagy in primary cortical astrocytes using immunoblot and immunocytochemistry assays. Suppression of specific proteins was performed via siRNA. LC3 puncta was determined using confocal microscopy. Results: GT strongly upregulated autophagy marker LC3 by a concentration- as well as time-dependent manner via G protein-coupled LPA receptors. GT-induced autophagy was further confirmed by the formation of LC3 puncta. Interestingly, on pretreatment with an mammalian target of rapamycin (mTOR) inhibitor, rapamycin, GT further enhanced LC3-II and LC3 puncta expression. However, GT-induced autophagy was significantly attenuated by inhibition of autophagy by 3-methyladenine and knockdown Beclin-1, Atg5, and Atg7 gene expression. Importantly, when pretreated with a lysosomotropic agent, E-64d/peps A or bafilomycin A1, GT significantly increased the levels of LC3-II along with the formation of LC3 puncta. In addition, GT treatment enhanced autophagic flux, which led to an increase in lysosome-associated membrane protein 1 and degradation of ubiquitinated p62/SQSTM1. Conclusion: GT induces autophagy via mTOR-mediated pathway and elevates autophagic flux. This study demonstrates that GT can be used as an autophagy-inducing agent in cortical astrocytes.

A Neuroprotective Action of Quercetin and Apigenin through Inhibiting Aggregation of Aβ and Activation of TRKB Signaling in a Cellular Experiment

  • Ya-Jen Chiu;Yu-Shan Teng;Chiung-Mei Chen;Ying-Chieh Sun;Hsiu Mei Hsieh-Li;Kuo-Hsuan Chang;Guey-Jen Lee-Chen
    • Biomolecules & Therapeutics
    • /
    • 제31권3호
    • /
    • pp.285-297
    • /
    • 2023
  • Alzheimer's disease (AD) is a neurodegenerative disease with progressive memory loss and the cognitive decline. AD is mainly caused by abnormal accumulation of misfolded amyloid β (Aβ), which leads to neurodegeneration via a number of possible mechanisms such as down-regulation of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TRKB) signaling pathway. 7,8-Dihydroxyflavone (7,8-DHF), a TRKB agonist, has demonstrated potential to enhance BDNF-TRKB pathway in various neurodegenerative diseases. To expand the capacity of flavones as TRKB agonists, two natural flavones quercetin and apigenin, were evaluated. With tryptophan fluorescence quenching assay, we illustrated the direct interaction between quercetin/apigenin and TRKB extracellular domain. Employing Aβ folding reporter SH-SY5Y cells, we showed that quercetin and apigenin reduced Aβ-aggregation, oxidative stress, caspase-1 and acetylcholinesterase activities, as well as improved the neurite outgrowth. Treatments with quercetin and apigenin increased TRKB Tyr516 and Tyr817 and downstream cAMP-response-element binding protein (CREB) Ser133 to activate transcription of BDNF and BCL2 apoptosis regulator (BCL2), as well as reduced the expression of pro-apoptotic BCL2 associated X protein (BAX). Knockdown of TRKB counteracted the improvement of neurite outgrowth by quercetin and apigenin. Our results demonstrate that quercetin and apigenin are to work likely as a direct agonist on TRKB for their neuroprotective action, strengthening the therapeutic potential of quercetin and apigenin in treating AD.

Protective effect of Capsosiphon fulvescens on oxidative stress-stimulated neurodegenerative dysfunction of PC12 cells and zebrafish larva models

  • Laxmi Sen Thakuri;Jung Eun Kim;Jin Yeong Choi;Dong Young Rhyu
    • Fisheries and Aquatic Sciences
    • /
    • 제26권1호
    • /
    • pp.24-34
    • /
    • 2023
  • Reactive oxygen species (ROS) at high concentrations induce oxidative stress, an imbalanced redox state that is a prevalent cause of neurodegenerative disorders. This study aimed to investigate the protective effect of Capsosiphon fulvescens (CF) extract on oxidative stress-induced impairment of cognitive function in models of neurodegenerative diseases. CF was extracted with subcritical water and several solvents and H2O2 (0.25 mM) or aluminum chloride (AlCl3; 25 µM) as an inducer of ROS was treated in PC12 neuronal cells and zebrafish larvae. All statistical analyses were performed using one-way analysis of variance and Dunnett's test using GraphPad Prism. H2O2 and AlCl3 were found to significantly induce ROS production in PC12 neuronal cells and zebrafish larvae. In addition, they strongly affected intracellular Ca2+ levels, antioxidant enzyme activity, brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) signaling, acetylcholinesterase (AChE) activity, and hallmarks of Alzheimer's disease. However, treatment of H2O2-induced PC12 cells or AlCl3-induced zebrafish larvae with CF subcritical water extract at 90℃ and CF water extract effectively regulated excessive ROS production, intracellular Ca2+ levels, and mRNA expression of superoxide dismutase, glutathione peroxide, glycogen synthase kinase-3 beta, β-amyloid, tau, AChE, BDNF, and TrkB. Our study suggested that CF extracts can be a potential source of nutraceuticals that can improve the impairment of cognitive function and synaptic plasticity by regulating ROS generation in neurodegenerative diseases.

알츠하이머병과 뇌소혈관질환의 연관성 (Association between Cerebral Small Vessel and Alzheimer's Disease)

  • 이경훈;강경미
    • 대한영상의학회지
    • /
    • 제83권3호
    • /
    • pp.486-507
    • /
    • 2022
  • 뇌소혈관질환은 뇌 자기공명영상에서 흔히 관찰되는 혈관성 변화로 뇌백질 고신호강도, 뇌미세출혈, 열공성 경색, 혈관주위공간 등을 포함한다. 이러한 혈관성 변화가 알츠하이머병(Alzheimer's disease; 이하 AD)의 발병 및 진행과 관련되어 있고, 대표 병리인 베타 아밀로이드 및 타우 단백의 침착과도 연관되어 있다는 증거들이 축적되고 있다. 혈관성 변화는 생활습관 개선이나 약물 치료를 통해 예방과 개선이 가능하기 때문에 뇌소혈관질환과 AD 및 AD 생체지표의 관련성을 연구하는 것이 중요하다. 본 종설에서는 AD와 AD 생체지표에 대해 간략히 소개하고, AD와 혈관성 변화의 관련성에 대해 축적된 증거들을 제시한 다음, 뇌소혈관질환의 병태 생리와 MR 영상 소견을 설명하고자 한다. 또 뇌소혈관질환과 AD 진단의 위험도 및 AD 생체지표와의 관련성에 대한 기존 연구 결과들을 정리하고자 한다.