DOI QR코드

DOI QR Code

A Neuroprotective Action of Quercetin and Apigenin through Inhibiting Aggregation of Aβ and Activation of TRKB Signaling in a Cellular Experiment

  • Ya-Jen Chiu (School of Life Science, National Taiwan Normal University) ;
  • Yu-Shan Teng (School of Life Science, National Taiwan Normal University) ;
  • Chiung-Mei Chen (Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine) ;
  • Ying-Chieh Sun (Department of Chemistry, National Taiwan Normal University) ;
  • Hsiu Mei Hsieh-Li (School of Life Science, National Taiwan Normal University) ;
  • Kuo-Hsuan Chang (Department of Neurology, Chang Gung Memorial Hospital, Chang Gung University College of Medicine) ;
  • Guey-Jen Lee-Chen (School of Life Science, National Taiwan Normal University)
  • Received : 2022.10.26
  • Accepted : 2022.11.24
  • Published : 2023.05.01

Abstract

Alzheimer's disease (AD) is a neurodegenerative disease with progressive memory loss and the cognitive decline. AD is mainly caused by abnormal accumulation of misfolded amyloid β (Aβ), which leads to neurodegeneration via a number of possible mechanisms such as down-regulation of brain-derived neurotrophic factor-tropomyosin-related kinase B (BDNF-TRKB) signaling pathway. 7,8-Dihydroxyflavone (7,8-DHF), a TRKB agonist, has demonstrated potential to enhance BDNF-TRKB pathway in various neurodegenerative diseases. To expand the capacity of flavones as TRKB agonists, two natural flavones quercetin and apigenin, were evaluated. With tryptophan fluorescence quenching assay, we illustrated the direct interaction between quercetin/apigenin and TRKB extracellular domain. Employing Aβ folding reporter SH-SY5Y cells, we showed that quercetin and apigenin reduced Aβ-aggregation, oxidative stress, caspase-1 and acetylcholinesterase activities, as well as improved the neurite outgrowth. Treatments with quercetin and apigenin increased TRKB Tyr516 and Tyr817 and downstream cAMP-response-element binding protein (CREB) Ser133 to activate transcription of BDNF and BCL2 apoptosis regulator (BCL2), as well as reduced the expression of pro-apoptotic BCL2 associated X protein (BAX). Knockdown of TRKB counteracted the improvement of neurite outgrowth by quercetin and apigenin. Our results demonstrate that quercetin and apigenin are to work likely as a direct agonist on TRKB for their neuroprotective action, strengthening the therapeutic potential of quercetin and apigenin in treating AD.

Keywords

Acknowledgement

We thank the Instrumentation Center of National Taiwan Normal University (MOST 107-2731-M-003-001, MD ImageXpress Micro Confocal, BIO002000) for their support and assistance in this work. We also thank the National RNAi Core Facility, Academia Sinica, for technical support. This work was supported by Ministry of Science and Technology of Taiwan (MOST; 107-2320-B-003-006, 107-2320-B-182A-020 and 107-2811-B-003-506) and Chang Gung Medical Foundation of Taiwan (CMRPG3L0042).

References

  1. Balez, R., Steiner, N., Engel, M., Munoz, S. S., Lum, J. S., Wu, Y., Wang, D., Vallotton, P., Sachdev, P., O'Connor, M., Sidhu, K.,Munch, G. and Ooi, L. (2016) Neuroprotective effects of apigenin against inflammation, neuronal excitability and apoptosis in an induced pluripotent stem cell model of Alzheimer's disease. Sci. Rep. 6, 31450.
  2. Boulton, D. W., Walle, U. K. and Walle, T. (1999) Fate of the flavonoid quercetin in human cell lines: chemical instability and metabolism. J. Pharm. Pharmacol. 51, 353-359. https://doi.org/10.1211/0022357991772367
  3. Chang, K. H., Chiu, Y. J., Chen, S. L., Huang, C. H., Lin, C. H., Lin, T. H., Lee, C. M., Ramesh, C., Wu, C. H., Huang, C. C., Fung, H. C., Chen, Y. C., Lin, J. Y., Yao, C. F., Huang, H. J., Lee-Chen, G. J., Lee, M. C. and Hsieh-Li, H. M. (2016) The potential of synthetic indolylquinoline derivatives for Aβ aggregation reduction by chemical chaperone activity. Neuropharmacology 101, 309-319. https://doi.org/10.1016/j.neuropharm.2015.09.005
  4. Chiang, N. N., Lin, T. H., Teng, Y. S., Sun, Y. C., Chang, K. H., Lin, C. Y., Hsieh-Li, H. M., Su, M. T., Chen, C. M. and Lee-Chen, G. J. (2021) Flavones 7,8-DHF, quercetin, and apigenin against Tau toxicity via activation of TRKB signaling in ΔK280 TauRD-DsRed SH-SY5Y cells. Front. Aging Neurosci. 13, 758895.
  5. Chiu, Y. J., Hsieh, Y. H., Lin, T. H., Lee, G. C., Hsieh-Li, H. M., Sun, Y. C., Chen, C. M., Chang, K. H. and Lee-Chen, G. J.(2019) Novel compound VB-037 inhibits Aβ aggregation and promotes neurite outgrowth through enhancement of HSP27 and reduction of P38 and JNK-mediated inflammation in cell models for Alzheimer's disease. Neurochem. Int. 125, 175-186. https://doi.org/10.1016/j.neuint.2019.01.021
  6. Di, L., Kerns, E. H., Fan, K., McConnell, O. J. and Carter, G. T. (2003) High throughput artificial membrane permeability assay for blood-brain barrier. Eur. J. Med. Chem. 38, 223-232. https://doi.org/10.1016/S0223-5234(03)00012-6
  7. Di, L., Kerns, E. H., Bezar, I. F., Petusky, S. L. and Huang, Y. (2009) Comparison of blood-brain barrier permeability assays: in situ brain perfusion, MDR1-MDCKII and PAMPA-BBB. J. Pharm. Sci. 98, 1980-9191. https://doi.org/10.1002/jps.21580
  8. Evans, N. A., Facci, L., Owen, D. E., Soden,P. E., Burbidge, S. A., Prinjha, R. K., Richardson, J. C. and Skaper, S. D. (2008) Aβ1-42 reduces synapse number and inhibits neurite outgrowth in primary cortical and hippocampal neurons: a quantitative analysis. J. Neurosci. Methods 175, 96-103. https://doi.org/10.1016/j.jneumeth.2008.08.001
  9. Flores, J., Noel, A., Foveau, B., Lynham, J., Lecrux, C. and LeBlanc, A. C. (2018) Caspase-1 inhibition alleviates cognitive impairment and neuropathology in an Alzheimer's disease mouse model. Nat. Commun. 9, 3916.
  10. Graefe, E. U., Wittig, J., Mueller, S., Riethling, A. K., Uehleke, B., Drewelow, B., Pforte, H., Jacobasch, G., Derendorf, H. and Veit, M. (2001) Pharmacokinetics and bioavailability of quercetin glycosides in humans. J. Clin. Pharmacol. 41, 492-499. https://doi.org/10.1177/00912700122010366
  11. Harborne, J. B. and Williams, C. A. (2000) Advances in flavonoid research since 1992. Phytochemistry 55, 481-504. https://doi.org/10.1016/S0031-9422(00)00235-1
  12. Huang, C. C., Chang, K. H., Chiu, Y. J., Chen, Y. R., Lung, T. H., HsiehLi, H. M., Su, M. T., Sun, Y. C., Chen, C. M., Lin, W. and Lee-Chen, G. J. (2021) Multi-target effects of novel synthetic coumarin derivatives protecting Aβ-GFP SH-SY5Y cells against Aβ toxicity. Cells 10, 3095.
  13. Inestrosa, N. C., Alvarez, A., Perez, C. A., Moreno, R. D., Vicente, M., Linker, C., Casanueva, O. I., Soto, C. and Garrido, J. (1996) Acetylcholinesterase accelerates assembly of amyloid-β-peptides into Alzheimer's fibrils: possible role of the peripheral site of the enzyme. Neuron 16, 881-891. https://doi.org/10.1016/S0896-6273(00)80108-7
  14. Jang, S. W., Liu, X., Yepes, M., Shepherd, K. R., Miller, G. W., Liu, Y., Wilson, W. D., Xiao, G., Blanchi, B., Sun, Y. E. and Ye, K. (2010) A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone. Proc. Natl. Acad. Sci. U. S. A. 107, 2687-2692. https://doi.org/10.1073/pnas.0913572107
  15. Kaushal, V., Dye, R., Pakavathkumar, P., Foveau, B., Flores, J., Hyman, B., Ghetti, B., Koller, B. H. and LeBlanc, A. C. (2015) Neuronal NLRP1 inflammasome activation of Caspase-1 coordinately regulates inflammatory interleukin-1-beta production and axonal degeneration-associated Caspase-6 activation. Cell Death Differ. 22, 1676-1686. https://doi.org/10.1038/cdd.2015.16
  16. Kensler, T. W., Wakabayashi, N. and Biswal, S. (2007) Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 47, 89-116. https://doi.org/10.1146/annurev.pharmtox.46.120604.141046
  17. Kumar, K. K., Priyanka, L., Gnananath, K., Babu, P. R. and Sujatha, S. (2015) Pharmacokinetic drug interactions between apigenin, rutin and paclitaxel mediated by P-glycoprotein in rats. Eur. J. Drug Metab. Pharmacokinet. 40, 267-276. https://doi.org/10.1007/s13318-014-0203-z
  18. Levine, E. S., Dreyfus, C. F., Black, I. B. and Plummer, M. R. (1995) Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors. Proc. Natl. Acad. Sci. U. S. A. 92, 8074-8077. https://doi.org/10.1073/pnas.92.17.8074
  19. Li, Y. L., Guo, H., Zhao, Y. Q., Li, A. F., Ren, Y. Q. and Zhang, J. W. (2017) Quercetin protects neuronal cells from oxidative stress and cognitive degradation induced by amyloid β-peptide treatment. Mol. Med. Rep. 16, 1573-1577. https://doi.org/10.3892/mmr.2017.6704
  20. Li, S., Zhao, X., Lazarovici, P. and Zheng, W. (2019) Artemether activation of AMPK/GSK3β(ser9)/Nrf2 signaling confers neuroprotection towards β-amyloid-induced neurotoxicity in 3×Tg Alzheimer's mouse model. Oxid. Med. Cell. Longev. 2019, 1862437.
  21. Lipinski, C. A., Lombardo, F., Dominy, B. W. and Feeney, P. J. (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 46, 3-26. https://doi.org/10.1016/S0169-409X(00)00129-0
  22. Liu, R., Zhang, T., Yang, H., Lan, X., Ying, J. and Du, G. (2011) The flavonoid apigenin protects brain neurovascular coupling against amyloid-β25-35-induced toxicity in mice. J. Alzheimers Dis. 24, 85-100. https://doi.org/10.3233/JAD-2010-101593
  23. Liu, X., Qi, Q., Xiao, G., Li, J., Luo, H. R. and Ye, K. (2013) O-methylated metabolite of 7,8-dihydroxyflavone activates TrkB receptor and displays antidepressant activity. Pharmacology 91, 185-200. https://doi.org/10.1159/000346920
  24. Liu, X., Obianyo, O., Chan, C. B., Huang, J., Xue, S., Yang, J. J., Zeng, F., Goodman, M. and Ye, K. (2014) Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor. J. Biol. Chem. 289, 27571-27584. https://doi.org/10.1074/jbc.M114.562561
  25. Lobello, K., Ryan, J. M., Liu, E., Rippon, G. and Black, R. (2012) Targeting β amyloid: a clinical review of immunotherapeutic approaches in Alzheimer's disease. Int. J. Alzheimers Dis. 2012, 628070.
  26. Lu, B., Nagappan, G., Guan, X., Nathan, P. J. and Wren, P. (2013) BDNF-based synaptic repair as a disease-modifying strategy for neurodegenerative diseases. Nat. Rev. Neurosci. 14, 401-416. https://doi.org/10.1038/nrn3505
  27. Lu, J. J., Yang, M., Sun, Y. and Zhou, X. F. (2014) Synthesis, trafficking and release of BDNF. In Handbook of Neurotoxicity (R. M. Kostrzewa, Ed.), pp. 1955-1971. Springer, New York.
  28. Matrone , C., Ciotti, M. T., Mercanti, D., Marolda, R. and Calissano, P. (2008) NGF and BDNF signaling control amyloidogenic route and Aβ production in hippocampal neurons. Proc. Natl. Acad. Sci. U. S. A. 105, 13139-13144. https://doi.org/10.1073/pnas.0806133105
  29. Mattson, M. P. (2004) Pathways towards and away from Alzheimer's disease. Nature 430, 631-639. https://doi.org/10.1038/nature02621
  30. Minichiello, L. (2009) TrkB signalling pathways in LTP and learning. Nat. Rev. Neurosci. 10, 850-860. https://doi.org/10.1038/nrn2738
  31. Nagahara, A. H., Merrill, D. A., Coppola, G., Tsukada, S., Schroeder, B. E., Shaked, G. M., Wang, L., Blesch, A., Kim, A., Conner, J. M., Rockenstein, E., Chao, M. V., Koo, E. H., Geschwind, D., Masliah, E., Chiba, A. A. and Tuszynski, M. H. (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer's disease. Nat. Med. 15, 331-337. https://doi.org/10.1038/nm.1912
  32. Ottaviani, G., Martel, S., Escarala, C., Nicolle, E. and Carrupt, P. A. (2008) The PAMPA technique as a HTS tool for partition coefficients determination in different solvent/water systems. Eur. J. Pharm. Sci. 35, 68-75. https://doi.org/10.1016/j.ejps.2008.06.006
  33. Paradis, E., Douillard, H., Koutroumanis, M., Goodyer, C. and LeBlanc, A. (1996) Amyloid β peptide of Alzheimer's disease downregulates Bcl-2 and upregulates bax expression in human neurons. J. Neurosci. 16, 7533-7539. https://doi.org/10.1523/JNEUROSCI.16-23-07533.1996
  34. Poon, W. W., Blurton-Jones, M., Tu, C. H., Feinberg, L. M., Chabrier, M. A., Harris, J. W., Jeon, N. L. and Cotman, C. W. (2011) β-Amyloid impairs axonal BDNF retrograde trafficking. Neurobiol. Aging 32, 821-833. https://doi.org/10.1016/j.neurobiolaging.2009.05.012
  35. Querfurth, H. W. and LaFerla, F. M. (2010) Alzheimer's disease. N. Engl. J. Med. 362, 329-344. https://doi.org/10.1056/NEJMra0909142
  36. Ramsey, C. P., Glass, C. A., Montgomery, M. B., Lindl, K. A., Ritson, G. P., Chia, L. A., Hamilton, R. L., Chu, C. T. and Jordan-Sciutto, K. L. (2007) Expression of Nrf2 in neurodegenerative diseases. J. Neuropathol. Exp. Neurol. 66, 75-85. https://doi.org/10.1097/nen.0b013e31802d6da9
  37. Rojo, A. I., Pajares, M., Garcia-Yague, A. J., Buendia, I., Van Leuven, F., Yamamoto, M., Lopez, M. G. and Cuadrado, A. (2018) Deficiency in the transcription factor NRF2 worsens inflammatory parameters in a mouse model with combined tauopathy and amyloidopathy. Redox Biol. 18, 173-180. https://doi.org/10.1016/j.redox.2018.07.006
  38. Sabogal-Guaqueta, A. M., Munoz-Manco, J. I., Ramirez-Pineda, J. R., Lamprea-Rodriguez, M., Osorio, E. and Cardona-Gomez, G. P. (2015) The flavonoid quercetin ameliorates Alzheimer's disease pathology and protects cognitive and emotional function in aged triple transgenic Alzheimer's disease model mice. Neuropharmacology 93, 134-145. https://doi.org/10.1016/j.neuropharm.2015.01.027
  39. Salehi, B., Venditti, A., Sharifi-Rad, M., Kregiel, D., Sharifi-Rad, J., Durazzo, A., Lucarini, M., Santini, A., Souto, E. B., Novellino, E., Antolak, H., Azzini, E., Setzer, W. N. and Martins, N.(2019) The therapeutic potential of apigenin. Int. J. Mol. Sci. 20, 1305.
  40. Saric Mustapic, D., Debeljak, Z., Males, Z. and Bojic, M. (2018) The inhibitory effect of flavonoid aglycones on the metabolic activity of CYP3A4 enzyme. Molecules 23, 2553.
  41. Song, J. H., Yu, J. T. and Tan L. (2015) Brain-derivedneurotrophic-factor in Alzheimer'sdisease: risk, mechanisms, and therapy. Mol. Neurobiol. 52, 1477-1493. https://doi.org/10.1007/s12035-014-8958-4
  42. Tonnies, E. and Trushina, E. (2017) Oxidative stress, synaptic dysfunction, and Alzheimer's disease. J. Alzheimers Dis. 57, 1105-1121. https://doi.org/10.3233/JAD-161088
  43. Tsai, J., Grutzendler, J., Duff, K. and Gan, W. B. (2004) Fibrillar amyloid deposition leads to local synaptic abnormalities and breakage of neuronal branches. Nat. Neurosci. 7, 1181-1183. https://doi.org/10.1038/nn1335
  44. Tsinman, O., Tsinman, K., Sun, N. and Avdeef, A. (2011) Physicochemical selectivity of the BBB microenvironment governing passive diffusion--matching with a porcine brain lipid extract artificial membrane permeability model. Pharm. Res. 28, 337-363. https://doi.org/10.1007/s11095-010-0280-x
  45. Walton, M. R. and Dragunow, M. (2000) Is CREB a key to neuronal survival? Trends Neurosci. 23, 48-53. https://doi.org/10.1016/S0166-2236(99)01500-3
  46. Yamamoto, M., Kensler, T. W. and Motohashi, H. (2018) The KEAP1-NRF2 system: a thiol-based sensor-effector apparatus for maintaining redox homeostasis. Physiol. Rev. 98, 1169-1203. https://doi.org/10.1152/physrev.00023.2017
  47. Zhang, J., Liu, D., Huang, Y., Gao, Y. and Qian, S. (2012) Biopharmaceutics classification and intestinal absorption study of apigenin. Int. J. Pharm. 436, 311-317. https://doi.org/10.1016/j.ijpharm.2012.07.002
  48. Zhang, Z., Liu, X., Schroeder, J. P., Chan, C. B., Song, M., Yu, S. P., Weinshenker, D. and Ye, K. (2014) 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease. Neuropsychopharmacology 39, 638-650. https://doi.org/10.1038/npp.2013.243
  49. Zhao, T., Zeng, Y. and Kermode, A. R. (2012) A plant cell-based system that predicts aβ42 misfolding: potential as a drug discovery tool for Alzheimer's disease. Mol. Genet. Metab. 107, 571-579. https://doi.org/10.1016/j.ymgme.2012.08.010
  50. Zhao, L., Wang, J. L., Liu, R., Li, X. X., Li, J. F. and Zhang, L. (2013) Neuroprotective, anti-amyloidogenic and neurotrophic effects of apigenin in an Alzheimer's disease mouse model. Molecules 18, 9949-9965. https://doi.org/10.3390/molecules18089949
  51. Zhao, W., Han, L., Bae, Y. and Manickam, D. S. (2019) Lucifer yellow - A robust paracellular permeability marker in a cell model of the human blood-brain barrier. J. Vis. Exp. 150, e58900.