• Title/Summary/Keyword: Amplitude modulation

Search Result 611, Processing Time 0.025 seconds

Exact Bit Error Probability of Orthogonal Space-Time Block Codes with Quadrature Amplitude Modulation

  • Kim, Sang-Hyo;Yang, Jae-Dong;No, Jong-Seon
    • Journal of Communications and Networks
    • /
    • v.10 no.3
    • /
    • pp.253-257
    • /
    • 2008
  • In this paper, the performance of generic orthogonal space-time block codes (OSTBCs) introduced by Alamouti [2], Tarokh [3], and Su and Xia [11] is analyzed. We first define one-dimensional component symbol error function (ODSEF) from the exact expression of the pairwise error probability of an OSTBC. Utilizing the ODSEF and the bit error probability (BEP) expression for quadrature amplitude modulation (QAM) introduced by Cho and Yoon [9], the exact closed-form expressions for the BEP of linear OSTBCs with QAM in quasi-static Rayleigh fading channel are derived. We also derive the exact closed-form of the BEP for some OSTBCs which have at least one message symbol transmitted with unequal power via all transmit antennas.

Performance of Receive Diversity UWB Systems with Pulse Amplitude and Position Modulation

  • Kim, Sang-Choon
    • Journal of information and communication convergence engineering
    • /
    • v.8 no.5
    • /
    • pp.498-501
    • /
    • 2010
  • In this paper, we extend ultra-wideband (UWB) single input single output (SISO) systems with a hybrid pulse amplitude and position modulation (PAPM) to single input multiple output (SIMO) systems using receive antenna diversity. The performance of a rake receive diversity combining scheme for UWB SIMO systems with a PAPM is examined in a log-normal multipath fading channel and also compared with that of a time-switched transmit diversity (TSTD) multiple input single output (MISO) system. It is seen that as the number of receive antennas increases, the receive diversity combining system improves the error performance. It is shown that the TSTD UWB MISO systems offer the performance equivalent to the receive diversity combining scheme for SIMO systems.

Bending Waves Propagating in a Bar with Periodically Nonuniform Material Properties (재질이 주기적으로 불균일한 보에서 전파하는 굽힘 탄성파)

  • Kim, Jin-O;Mun, Byeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.1923-1930
    • /
    • 2000
  • A bar with periodically nonuniform material properties is selected as a one-dimensional model of a flat-panel speaker. This paper describes a theoretical approach to the bending waves propagating i n the nonuniform bar. The phase speed of the wave is obtained using perturbation techniques for small amplitude, sinusoidal modulation of the flexural rigidity and mass density. It is shown that the wave speed is decreased due to the nonuniformity of the material properties by the amount proportional to the square of the modulation amplitude. The resonance occurring when the wavelength is half of the period of the material properties is analyzed by the method of multiple scales. It is also shown that the wave speed at the resonance mode is decreased by the amount proportional to the modulation amplitude but the wave of this mode does not propagate far enough due to attenuation.

Inhomogeneous amplitude modulation effects on the MTF of binocular objective (비균일 진폭변조가 쌍안경 대물경의 MTF에 미치는 영향)

  • 홍경희
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.102-106
    • /
    • 1999
  • In this study, inhomogeneous amplitude modulation effects on the imaging performance a lens system are expermentally investigated by measuring the diffraction OTF. The lens under the test is a binocular objective made in Korea. Inhomogeneous amplitude modulation is carried out by positioning the modulator cross contacted to the lens under test which is illuminated by collimated light beam. The aberration characteristics of the lens under test are examined by caculating the ray-fan through finite ray tracing. The MTFs of the lens illuminated by the homogeneous and inhomogeneous light beam are measured on the Gaussian image plane and compared with one another.

  • PDF

Transition-limited pulse-amplitude modulation technique for high-speed wireline communication systems

  • Eunji Song;Seonghyun Park;Jaeduk Han
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.974-981
    • /
    • 2023
  • This paper presents a transition-limited pulse-amplitude modulation (TLPAM) signaling method to enable a high data rate and robust wireline communications. TLPAM signaling addresses the impact of high intersymbol interference (ISI) ratios in conventional M-ary PAM signaling methods by limiting the maximum voltage transition level between adjacent symbols. The implementation of a TLPAM signaling encoder is realized by setting back the most significant bits (MSBs) in the queue. The correlation between TLPAM's maximum transition level, effective data rate, and eye width/height is analyzed with various channel loss parameters, followed by characterization and measurement results with a realistic channel setup. The analysis and experimental results reveal the effectiveness of the proposed TLPAM signaling scheme for achieving a high data rate with minimal interference.

Single-Phase Inverter System Using New Modulation Method (새로운 변조방식을 사용한 단상 인버터 시스템)

  • Lee, Hyoung-Ju;Won, Hwa-Young;Lim, Seung-Beom;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.5
    • /
    • pp.29-36
    • /
    • 2010
  • In this paper, we propose a single-phase inverter system using new modulation method. The proposed system is composed of a buck-boost converter and an inverter and controlled by PWAM scheme. PWAM method is a new modulation method which is the incorporation of PWM(Pulse Width Modulation) and PAM(Pulse Amplitude Modulation) methods. The DC voltage which is the input voltage of buck-boost converter is converted into a variable DC voltage by buck-boost converter. Also, the variable DC voltage which is the output voltage of buck-boost converter is converted into a sinusoidal AC voltage by inverter. The input voltage of inverter is processed by PWM switching in PWM section and bypassed in PAM section. By using PWAM method, switching action is not existed in PAM section and thus the times of switching is reduced. As a result, the switching loss can be reduced.

A Study on QAM Transmission Schemes for Constant Amplitude Coded Multicode Biorthogonal Modulation (정진폭 부호화된 다중부호 이진직교 변조의 QAM 전송방식에 대한 연구)

  • Hong, Dae-Ki;Kim, Sun-Hee;Kim, Young-Sung;Lim, Seung-Ok;Cho, Jin-Woong;Kang, Sung-Jin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.343-351
    • /
    • 2008
  • In this paper, we investigate the design of the QAM(Quadrature Amplitude Modulation) method for the CACB(Constant Amplitude Coded Multicode Biorthogonal) scheme. The modulation method fan improve the transmission data rate by increasing the BE(Bandwidth Efficiency). Additionally, we can improve the system performance by using the QAM SD(Soft Decision) method with the MDSA(Minimum Distance Selection Algorithm). Finally, the DFE(Decision Feedback Equalizer) for the CACB-QAM is simulated under the MPF(MultiPath Fading) channel for real implementation. The proposed scheme can be used for the PHY(PHYsical layer) standard of the WPAN(Wireless Personal Area Network) requiring high rate data transmission.

A Study of Iterative Channel Estimation and Equalization Scheme of FBMC/OQAM in a Frequency Oversampling Domain (FBMC/OQAM 시스템의 주파수 과표본 영역에서의 반복적인 채널 추정 및 등화 기법에 관한 연구)

  • Won, YongJu;Oh, JongGyu;Lee, JinSeop;Kim, JoonTae
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.391-403
    • /
    • 2016
  • FBMC/OQAM(Filterbank multicarrier on offset-Quadrature Amplitude Modulation) system is a multicarrier modulation which is not need to use cyclic prefix(CP). The CP of OFDM/QAM (orthogonal frequency division multiplexing on Quadrature Amplitude Modulation) system decreases data transmission rate. However, SER(symbol error rate) performance of FBMC/OQAM system is worse than OFDM/QAM system with frequency 1-tap equalization scheme in the frequency selective channel. In this paper, an iterative channel estimation and equalization scheme is performed in a frequency oversampling domain about each sub-channel of FBMC/OQAM system and SER performance using computer simulation is shown. Using the proposed scheme, the SER performance approaches to that of OFDM/QAM system in a frequency selective channel.

A Discrete-Amplitude Pulse Width Modulation for a High-Efficiency Linear Power Amplifier

  • Jeon, Young-Sang;Nam, Sang-Wook
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.679-688
    • /
    • 2011
  • A new discrete-amplitude pulse width modulation (DAPWM) scheme for a high-efficiency linear power amplifier is proposed. A radio frequency (RF) input signal is divided into an envelope and a phase modulated carrier. The low-frequency envelope is modulated so that it can be represented by a pulse whose area is proportional to its amplitude. The modulated pulse has at least two different pulse amplitude levels in order that the duty ratios of the pulse are kept large for small input. Then, an RF pulse train is generated by mixing the modulated envelope with the phase modulated carrier. The RF pulse train is amplified by a switching-mode power amplifier, and the original RF input signal is restored by a band pass filter. Because duty ratios of the RF pulse train are kept large in spite of a small input envelope, the DAPWM technique can reduce loss from harmonic components. Furthermore, it reduces filtering efforts required to suppress harmonic components. Simulations show that the overall efficiency of the pulsed power amplifier with DAPWM is about 60.3% for a mobile WiMax signal. This is approximately a 73% increase compared to a pulsed power amplifier with PWM.

Dual-function Dynamically Tunable Metamaterial Absorber and Its Sensing Application in the Terahertz Region

  • Li, You;Wang, Xuan;Zhang, Ying
    • Current Optics and Photonics
    • /
    • v.6 no.3
    • /
    • pp.252-259
    • /
    • 2022
  • In this paper, a dual-function dynamically tunable metamaterial absorber is proposed. At frequency points of 1.545 THz and 3.21 THz, two resonance peaks with absorption amplitude of 93.8% (peak I) and 99.4% (peak II) can be achieved. By regulating the conductivity of photosensitive silicon with a pump laser, the resonance frequency of peak I switches to 1.525 THz, and that of peak II switches to 2.79 THz. By adjusting the incident polarization angle by rotating the device, absorption amplitude tuning is obtained. By introducing two degrees of regulation freedom, the absorption amplitude modulation and resonant frequency switching are simultaneously realized. More importantly, dynamic and continuous adjustment of the absorption amplitude is obtained at a fixed resonant frequency, and the modulation depth reaches 100% for both peaks. In addition, the sensing property of the proposed MMA was studied while it was used as a refractive index sensor. Compared with other results reported, our device not only has a dual-function tunable characteristic and the highest modulation depth, but also simultaneously possesses fine sensing performance.