• Title/Summary/Keyword: Amorphous Silicon on Glass

Search Result 91, Processing Time 0.025 seconds

Thermal Analysis on Glass Backplane of OLED Displays During Joule Induced Crystallization Process (OLED 디스플레이 제작을 위한 Joule 유도 결정화 공정에서의 유리기판에 대한 열해석)

  • Kim, Dong-Hyun;Park, Seung-Ho;Hong, Won-Eui;Chung, Jang-Kyun;Ro, Jae-Sang;Lee, Seung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.10
    • /
    • pp.797-802
    • /
    • 2009
  • Large area crystallization of amorphous silicon thin-films on glass substrates is one of key technologies in manufacturing flat displays. Among various crystallization technologies, the Joule induced crystallization (JIC) is considered as the highly promising one in the OLED fabrication industries, since the amorphous silicon films on the glass can be crystallized within tens of microseconds, minimizing the thermally and structurally harmful influence on the glass. In the JIC process the metallic layers can be utilized to heat up the amorphous silicon thin films beyond the melting temperatures of silicon and can be fabricated as electrodes in OLED devices during the subsequent processes. This numerical study investigates the heating mechanisms during the JIC process and estimates the deformation of the glass substrate. Based on the thermal analysis, we can understand the temporal and spatial temperature fields of the backplane and its warping phenomena.

The Effect of Geometric Shape of Amorphous Silicon on the MILC Growth Rate (MILC 성장 속도에 비정질 실리콘의 기하학적 형상이 미치는 영향)

  • Kim Young-Su;Kim Min-Sun;Joo Seung-Ki
    • Korean Journal of Materials Research
    • /
    • v.14 no.7
    • /
    • pp.477-481
    • /
    • 2004
  • High quality polycrystalline silicon is very critical part of the high quality thin film transistor(TFT) for display devices. Metal induced lateral crystallization(MILC) is one of the most successful technologies to crystallize the amorphous silicon at low temperature(below $550^{\circ}C$) and uses conventional and large glass substrate. In this study, we observed that the MILC behavior changed with abrupt variation of the amorphous silicon active pattern width. We explained these phenomena with the novel MILC mechanism model. The 10 nm thick Ni layers were deposited on the glass substrate having various amorphous silicon patterns. Then, we annealed the sample at $550^{\circ}C$ with rapid thermal annealing(RTA) apparatus and measured the crystallized length by optical microscope. When MILC progress from narrow-width-area(the width was $w_2$) to wide-width-area(the width was $w_1$), the MILC rate decreased dramatically and was not changed for several hours(incubation time). Also the incubation time increased as the ratio, $w_1/w_2$, get larger. We can explain these phenomena with the tensile stress that was caused by volume shrinkage due to the phase transformation from amorphous silicon to crystalline silicon.

The nonvolatile memory device of amorphous silicon transistor (비정질실리콘 박막트랜지스터 비휘발성 메모리소자)

  • Hur, Chang-Wu;Park, Choon-Shik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1123-1127
    • /
    • 2009
  • This paper expands the scope of application of the thin film transistor (TFT) in which it is used as the switching element by making the amorphous silicon TFT with the non-volatile memory device,. It is the thing about the amorphous silicon non-volatile memory device which is suitable to an enlargement and in which this uses the additionally cheap substrate according to the amorphous silicon use. As to, the amorphous silicon TFT non-volatile memory device is comprised of the glass substrates and the gate, which evaporates on the glass substrates and in which it patterns the first insulation layer, in which it charges the gate the floating gate which evaporates on the first insulation layer and in which it patterns and the second insulation layer in which it charges the floating gate, and the active layer, in which it evaporates the amorphous silicon on the second insulation layer the source / drain layer which evaporates the n+ amorphous silicon on the active layer and in which it patterns and the source / drain layer electrode in which it evaporates on the source / drain layer.

A Study on the Nano-Deformation Behaviors of Single Crystal Silicon and Amorphous Borosilicate Considering the Mechanochemical Reaction (기계화학적 반응을 고려한 단결정 실리콘과 비정질 보로실리케이트의 나노 변형 거동에 관한 연구)

  • 윤성원;신용래;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.623-630
    • /
    • 2003
  • Nanomachining process, static nanoplowing, is one of the most promising lithographic technologies in terms of the low cost of operation and variety of workable materials. In nanomachining process, chemical effects are more dominant factor compared with those by physical deformation or fracture. For example, during the nanoscratch on a silicon surface in the atmosphere, micro protuberances are formed due to the mechanochemical reaction between diamond tip and the surfaces. On the contrary, in case of chemically stable materials, such as ceramic or glass, surface protuberances are not formed. The purpose of this study is to understand effects of the mechanochemical reaction between tip and surfaces on deformation behaviors of hard-brittle materials. Nanometerscale elasoplastic deformation behavior of single crystal silicon (100) was characterized with micro protuberance phenomena, and compared with that of borosilicate (Pyrex glass 7740). In addition, effects of the silicon protuberances on nanoscratch test results were discussed.

Laser Induced Crystallizatioo of Amorphous Si Films on Glass Substrates (유리 기판을 이용한 비정질 실라콘 박막의 결정화)

  • Kim, P.K.;Moon, S.J.;Jeong, S.H.
    • Laser Solutions
    • /
    • v.13 no.1
    • /
    • pp.6-10
    • /
    • 2010
  • Crystallization of 100 nm thick amorphous silicon (a-Si) films on glass substrates was carried out by using a double laser irradiation method. Depending on a-Si deposition method or glass types, the quality of crystallized silicon film varies significantly. For a-Si films deposited with high concentration of impurities, large grains or high crystallinity can not be achieved. Crystallization with different a-Si deposition methods confirmed that for the polycrystallization of a-Si films on glass substrates, controlling the impurity density during substrate preparation is critical.

  • PDF

SPC Growth of Si Thin Films Preapared by PECVD (PECVD 방법으로 증착한 Si박막의 SPC 성장)

  • 문대규;임호빈
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.05a
    • /
    • pp.42-45
    • /
    • 1992
  • The poly silicon thin films were prepared by solid phase crystallization at 600$^{\circ}C$ of amorphous silicon films deposited on Corning 7059 glass and (100) silicon wafer with thermally grown SiO$_2$substrate by plasma enhanced chemical vapor deposition with varying rf power, deposition temperature, total flow rate. Crystallization time, microstructure, absorption coefficients were investigated by RAMAN, XRD analysis and UV transmittance measurement. Crystallization time of amorphous silicon films was increased with increasing rf power, decreasing deposition temperature and decreasing total flow rate.

  • PDF

Silicon Thin-Film Transistors on Flexible Polymer Foil Substrates

  • Cheng, I-Chun;Chen, Jian Z.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1455-1458
    • /
    • 2008
  • Amorphous silicon (a-Si:H) thin-film transistors (TFTs) are fabricated on flexible organic polymer foil substrates. As-fabricated performance, electrical bias-stability at elevated temperatures, electrical response under mechanical flexing, and prolonged mechanical stability of the TFTs are studied. TFTs made on plastic at ultra low process temperatures of $150^{\circ}C$ show initial electrical performance like TFTs made on glass but large gate-bias stress instability. An abnormal saturation of the instability against operation temperature is observed.

  • PDF

Fabrication of Hydrogenated Amorphous Silicon Thin-Film Transistors for Flat Panel Display (평판 표시기를 위한 수소화된 비정질실리콘 박막트랜지스터의 제작)

  • Kim, Nam Deog;Kim, Choong Ki;Choi, Kwang Soo;Jang, Jin;Lee, Choo Chon
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.3
    • /
    • pp.453-458
    • /
    • 1987
  • Amorphous silicon thin-film transtors (TFT's) have been designed and fabricated on glass substrates. The hydrogenated amorphous silicon (a-Si:H) thin-film has been deposited by decomposing silane(SiH4) in hydorgen ambient by rf glow discharge method. Amorphous silicon nitride(a-Si:H) has been chosen as the gate dielectric material. It has been prepared by decomposing the mixed gas of silane(SiH4) and ammonia(NH3). The electrical properties and performance characteristics of the thin-film transistrs have been measured and compared with the requirements for the switching elements in liquid crystal flat panel display. The results show that liquid crystal flat panel displays can be fabricated using the thin-film transistors described in this paper.

  • PDF

Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations (분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구)

  • Kim, Soo Min;Kang, Byungjun;Jeong, Sujeong;Kang, Yoonmook;Lee, Hae-seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

Light-managing Techniques at Front and Rear Interfaces for High Performance Amorphous Silicon Thin Film Solar Cells (고성능 비정질실리콘 박막태양전지를 위한 전후면 계면에서의 빛의 효율적 관리 기술)

  • Kang, Dong-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.354-356
    • /
    • 2017
  • We focused on light management technology in amorphous silicon solar cells to suppress increase in absorber thickness for improving power conversion efficiency (PCE). $MgF_2$ and $TiO_2$ anti-reflection layers were coated on both sides of Asahi VU ($glass/SnO_2:F$) substrates, which contributed to increase in PCE from 9.16% to 9.81% at absorber thickness of only 150 nm. Also, we applied very thin $MgF_2$ as a rear reflector at n-type nanocrystalline silicon oxide/Ag interface to boost photocurrent. By reinforcing rear reflection, we could find the PCE increase from 10.08% up to 10.34% based on thin absorber about 200 nm.