• Title/Summary/Keyword: Amino acid sequence

Search Result 1,692, Processing Time 0.035 seconds

Analysis on the nucleotide sequence of the signal region of bacillus subitilis extracellular cellulase gene (Bacillus subtilis로 부터 분리한 cellulase 유전자의 조절부위에 대한 염기서열분석)

  • 서연수;이영호;백운화;강현삼
    • Korean Journal of Microbiology
    • /
    • v.24 no.3
    • /
    • pp.236-242
    • /
    • 1986
  • The nucleotide sequence of the genetic control site of Bacillus subtilis gene for $(1-4)-{\beta}-D-glucan$ endoglucanase (cellulase) was determined according to the procedures of the dideoxy chain termination method(Sanger et. al., 1977). The deduced amino acid sequence of this enzyme has a hydrophobic signal peptide at the $NH_2$ terminus similar to those found in fifteen other extracellualr enzymes from Bacillus species. This is followed by a sequence resembling the Bacillus ribosome binding site 14 nucleotide before the first codon of the gene. The presumptive promoter sequence was located 92 base pairs upstream fromthe initiation codon. The homology region in signal sequences was striking when comparing all the signal sequences of sixteen extracellular enzymes from Bacillus species so far compiled.

  • PDF

Molecular Cloning of a cDNA Encoding a Ferritin Subunit from the Spider, Araneus ventricosus

  • Jin, Byung-Rea;Han, Ji-Hee;Kim, Seong-Ryul;Sohn, Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.4 no.2
    • /
    • pp.163-168
    • /
    • 2002
  • We report for the first time the cDNA sequence encoding a ferritin subunit from the spiders Araneus ventricosus. The complete cDNA sequence of A. ventricosus ferritin subunit comprised 516 bp with 172 amino acid residues. The A. ventricosus ferritin subunit cDNA contained a conserved iron responsive element sequence in the 5 untranslated region. An alignment of the deduced protein sequence of the A. ventricosus ferritin subunit gene to that of other heavy chain ferritin molecules showed that A. ventricosus ferritin subunit is most similar to the great pond snail, Lymnaea stagnalis, ferritin with 70.2% of protein sequence identity.

Cloning and Sequence Analysis of Wild Argali ISG15 cDNA

  • Sun, Yanming;Chen, Kaili;Shen, Wen;Cui, Rupeng;Lu, Haifu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.561-566
    • /
    • 2014
  • The complete coding sequence of Wild Argali ISG15 cDNA was generated by rapid amplification of cDNA ends. The ISG15 cDNA was 642 bp with an open reading frame of 474 bp, which encoded a 17.47 kDa protein composed of 157 amino acids. Its amino acid sequence shared 97.9%, 80.8%, 91.4%, 94.3%, 78.3% identity with those of ISG15cDNA from Ovis aries (accession no. NM001009735.1), Capra hircus (accession no. HQ329186.1), Bos taurus (accession no. BC102318.1), Bubalus bubalis (accession no. HM543269.1), and Sus scrofa (accession no. EU647216.1), respectively. The entire coding sequence was inserted into the pET-28a vector and expressed in E. coli. The recombinant protein corresponded to the expected molecular mass of 25 kDa as judged by SDS-PAGE, and it was detected in the bacterial inclusion bodies. The expressed protein could be purified by $Ni^{2+}$ chelate affinity chromatography and the results from the lymphocyte proliferation test showed that the product could stimulate lymphocyte proliferation very well (p<0.05), which further confirmed its biological activity.

Cloning and Sequence Analysis of the Aminoglycoside Resistance Gene from a Nebramycin Complex Producer, Streptoalloteichus hindustanus

  • Hyun, Chang-Gu;Kim, Jong-Woo;Han, Jae-Jin;Choi, Young-Nae;Suh, Joo-Won
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.2
    • /
    • pp.146-151
    • /
    • 1998
  • The aminoglycoside multiple-resistance determinant from Streptoalloteichus hindustanus was cloned into Streptomyces lividans and named nbrB. The 1.2-kb ApaI- BclI fragment encompassing nbrB was located within a 2.6-kb ApaI fragment by successive subcloning experiments. The complete DNA nucleotide sequence of 1.2-kb containing nbrB was determined. The sequence contains an open reading frame that putatively encodes a polypeptide of 281 amino acids with a predicted molecular weight of 30,992. The deduced amino acid sequence of nbrB shows identities of 85.1% to kgmB of S. tenebrarius, 59.6% to sgm of Micromonospora zionensis, and 57.7% to grm of M. rosea. The similarity of nbrB to kgmB suggests that nbrB encodes a 16S rRNA methylase similar to that encoded by kgmB and that both genes might be derived from a common ancestral gene.

  • PDF

Identification and Heterologous Expression of a ${\Delta}4$-Fatty Acid Desaturase Gene from Isochrysis sphaerica

  • Guo, Bing;Jiang, Mulan;Wan, Xia;Gong, Yangmin;Liang, Zhuo;Hu, Chuanjiong
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1413-1421
    • /
    • 2013
  • The marine microalga Isochrysis sphaerica is rich in the very-long-chain polyunsaturated fatty acids, including eicosapentaenoic acid (EPA, $C20:5{\omega}-3$) and docosahexaenoic acid (DHA, $C22:6{\omega}-3$) that are important to human health. Here, we report a functional characterization of a ${\Delta}4$-fatty acid desaturase gene (FAD4) from I. sphaerica. IsFAD4 contains a 1,284 bp open reading frame encoding a 427 amino acid polypeptide. The deduced amino sequence comprises three conserved histidine motifs and a cytochrome b5 domain at its N-terminus. Phylogenetic analysis indicated that IsFad4 formed a unique Isochrysis clade distinct from the counterparts of other eukaryotes. Heterologous expression of IsFAD4 in Pichia pastoris showed that IsFad4 was able to desaturate docosapentaenoic acid (DPA) to form DHA, and the rate of converting DPA to DHA was 79.8%. These results throw light on the potential industrial production of specific polyunsaturated fatty acids through IsFAD4 transgenic yeast or oil crops.

Biochemical and Molecular Analysis of OsPAP1: A Phosphate Starvation Induced Purple Acid Phosphatase Gene from Rice

  • Hur, Yeon Jae;Yi, Young Byung;Kim, Tae Ho;Kim, Doh Hoon
    • Korean Journal of Breeding Science
    • /
    • v.42 no.5
    • /
    • pp.455-462
    • /
    • 2010
  • Purple acid phosphatase is important for phosphorus remobilization in plants, but its role in plant adaptation to low phosphorus availability is not known. The cDNA encoding O. sativa purple acid phosphatase (OsPAP1) has 1008 bp with an open reading frame of 335 amino acid residues. The amino acid sequence of OsPAP1 cDNA shows of 50-51% identity with other plant purple acid phosphatases. OsPAP1 was expressed in rice plants and in cell cultures in the absence of phosphate ($P_i$). The expression was organ-specific with the strongest expression in $P_i$-deprived roots. Functional expression of the OsPAP1 gene in the transgenic Arabidopsis line was confirmed by northern and western blot analysis. OsPAP1 overexpression lines had higher phosphatase activity than wild-type. Overexpression of OsPAP1 in Arabidopsis plants resulted in increased Pi accumulation under Pi sufficient condition. These results show that the OsPAP1 gene represents more efficient $P_i$ uptake and can be used to develop new transgenic dicotyledonous plants.

Mechanism of Sulfonylurea Herbicide Resistance in Broadleaf Weed, Monochoria korsakowii (광엽잡초 물옥잠의 Sulfonylurea 제초제에 대한 저항성 작용기작)

  • Park, Tae-Seon;Lhm, Yang-Bin;Kyung, Kee-Sung;Lee, Su-Heon;Park, Jae-Eup;Kim, Tae-Wan;Kim, Kil-Ung
    • The Korean Journal of Pesticide Science
    • /
    • v.7 no.4
    • /
    • pp.239-247
    • /
    • 2003
  • This experiment was carried out to study the resistant mechanism of sulfonylurea(SU) herbicides to Monochoria korsakowii occurring in the rice fields of Korea. The activity of acetolactate synthase(ALS), absorption and translocation of $[^{14C}]$bensulfuron-methyl, and DNA sequence of ALS genes were studied. The apparent SU resiatance to Monochoria korsakowii was confirmed in greenhouse testes. Fresh weight accumulation$(GR_{50})$ in the resistant biotype was about 5- to 64-fold higher in the presence of six SU herbicides compared to the susceptible biotype. The ALS activity isolated from the resistant biotype to herbicides tested was less sensitive than that of susceptible biotype. The concentration of herbicide required for 50% inhibition of ALS activity$(I_{50})$ was 14- to 76-fold higher as compared to the susceptible biotype. No differences were observed in the rates of $[^{14C}]$bensulfuron uptake and translocation. However, the DNA sequence from the resistant biotype differed from that of the susceptible biotype by single nucleotide substitution at three amino acid each in the middle region excluding the ends of ALS genes. We found three point mutations causing substitution of serine for threonine at amino acid 168, arginine for histidine at amino acid 189, and a aspartic acid for phenylalanine at amino acid 247, respectively, in the resistant biotype.

Characterization of Bacillus anthracis proteases through protein-protein interaction: an in silico study of anthrax pathogenicity

  • Banerjee, Amrita;Pal, Shilpee;Paul, Tanmay;Mondal, Keshab Chandra;Pati, Bikash Ranjan;Sen, Arnab;Mohapatra, Pradeep Kumar Das
    • CELLMED
    • /
    • v.4 no.1
    • /
    • pp.6.1-6.12
    • /
    • 2014
  • Anthrax is the deadly disease for human being caused by Bacillus anthracis. Instantaneous research work on the mode of infection of the organism revealed that different proteases are involved in different steps of pathogenesis. Present study reports the in silico characterization and the detection of pathogenic proteases involved in anthrax infection through protein-protein interaction. A total of 13 acid, 9 neutral, and 1 alkaline protease of Bacillus anthracis were selected for analysing the physicochemical parameter, the protein superfamily and family search, multiple sequence alignment, phylogenetic tree construction, protein-protein interactions and motif finding. Among the 13 acid proteases, 10 were found as extracellular enzymes that interact with immune inhibitor A (InhA) and help the organism to cross the blood brain barrier during the process of infection. Multiple sequence alignment of above acid proteases revealed the position 368, 489, and 498-contained 100% conserved amino acids which could be used to deactivate the protease. Among the groups analyzed, only acid protease were found to interact with InhA, which indicated that metalloproteases of acid protease group have the capability to develop pathogenesis during B. anthracis infection. Deactivation of conserved amino acid position of germination protease can stop the sporulation and germination of B anthracis cell. The detailed interaction study of neutral and alkaline proteases could also be helpful to design the interaction network for the better understanding of anthrax disease.

Molecular Characterization of A Glycine and Proline-rich Antibacterial Protein from Larvae of A Beetle, Protaetia brevitarsis

  • Hwang, Jae-Sam;Kim, Seong-Ryul;Kang, Heui-Yun;Yun, Eun-Young;Ahn, Mi-Young;Park, Kwan-Ho;Jeon, Jae-Pil;Kim, Mi-Ae;Kim, Nam-Jung;Hwang, Seok-Jo;Kim, Ik-Soo
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.15 no.1
    • /
    • pp.83-85
    • /
    • 2007
  • A glycine and proline-rich antibacterial protein was cloned from larvae of a beetle, Protaetia brevitarsis. The DNAs encoded a deduced propeptide of 127 amino acid residues with predicted molecular weight of 14.0 kDa and PI of 7.89. Structural analysis of this protein indicated the presence of a recognition sequence for the cleavage site within the constitutive secretory pathway(Arg-Xaa-Lys/Arg-Arg), suggesting that mature portion(72 amino acid residues) is produced by cleavage of signal peptide and propeptide from 127 amino-acid-long precursor protein. Mature portion sequence of this protein showed 72% similarity to that of Oryctes rhinoceros Rhinocerosin and 91% to that of Holotrichia diomphalia holotricin 2. The mRNA expression was reached the highest level at 4 hrs after E. coli injection and then declined gradually.

Catabolic Degradation of 4-Chlorobiphenyl by Pseudomonas sp. DJ-12 via Consecutive Reaction of meta-Cleavage and Hydrolytic Dechlorination

  • Chae, Jong-Chan;Kim, Eunheui;Park, Sang-Ho;Kim, Chi-Kyung
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.6
    • /
    • pp.449-455
    • /
    • 2000
  • Pseudomonas sp. strain DJ-12 is a bacterial isolate capable of degrading 4-chlorobiphenyl (4CBP) as a carbon and energy source. The catabolic degradation of 4CBP by the strain DJ-12 was studied along with the genetic organization of the genes responsible for the crucial steps of the catabolic degradation. The catabolic pathway was characterized as being conducted by consecutive reactions of the meta-cleavage of 4CBP, hydrolytic dechlorination of 4-chlorobenzoate (4CBA), hydroxylation of 4-hydroxybenzoate, and meta-cleavage of protocatechuate. The pcbC gene responsible for the meta-cleavage of 4CBP only showed a 30 to 40% homology in its deduced amino acid sequence compared to those of the corresponding genes from other strains. The amino acid sequence of 4CBA-CoA dechlorinase showed an 86% homology with that of Pseudomonas sp. CBS3, yet only a 50% homology with that of Arthrobacter spp. However, the fcb genes for the hydrolytic dechlorination of 4CBA in Pseudomonas sp. DJ-12 showed an uniquely different organization from those of CBS3 and other reported strains. Accordingly, these results indicate that strain DJ-12 can degrade 4CBA completely via meta-cleavage and hydrolytic dechlorination using enzymes that are uniquely different in their amino acid sequences from those of other bacterial strains with the same degradation activities.

  • PDF