• 제목/요약/키워드: Ambient Control

검색결과 606건 처리시간 0.022초

LNG 탱크 Roof의 온도균열 제어 (Thermal Crack Control of LNG Tank Roof)

  • 김태홍;하재담;유재상;이종열;권영호
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.421-424
    • /
    • 2002
  • Concrete roof in In-Chon LNG tank #15~18 is a very important structure. Precise control of quality is needed. This roof has 0.6~1.5m thickness, 36.23m radius, and, 12.7m height. So in this structure thermal crack caused by hydration heat should be controled. In this project belite cement plus LSP concrete is used. As a result of ambient temperature rising test and thermal analysis using FEM, this belite cement plus LSP concrete is expected to control the thermal crack well.

  • PDF

서울시에서의 최적 오존 저감 대책: OZIPR을 이용한 사례 연구 (On the Optimum Ozone Control Strategy in Seoul: Case Studies Using OZIPR)

  • 박주연;김용표
    • 한국대기환경학회지
    • /
    • 제18권5호
    • /
    • pp.427-433
    • /
    • 2002
  • In this discussion, an optimum ozone control strategy for the city of Seoul is discussed based on the OZIPR simulation results for three cases. It is claimed that, for the periods we have simulated, it is best to decrease VOCs emissions and increase NO$_{x}$ emissions to reduce the ambient maximum ozone concentration.n.

서울시 초미세먼지 질량농도 저감을 위한 입자 내 이온성분 최적감축방법 예측 (Estimation of Optimum PM2.5 Ionic Concentration Control Strategy for Reducing Fine Particle Mass Concentrations in Seoul)

  • 김정연;이지원;김용표
    • 한국입자에어로졸학회지
    • /
    • 제6권4호
    • /
    • pp.151-164
    • /
    • 2010
  • Inorganic ions and water are major components of ambient fine particles. Water content in fine particles is mainly determined by ambient meteorological conditions and the concentrations of hygroscopic species such as inorganic ions. Thus, to reduce fine particle mass concentration, it is important to accurately estimate the relationship between water content and the concentration of ions in fine particles. Water content in fine particles in Seoul are estimated by using a gas/particle equilibrium model to understand the characteristics of fine particle mass concentration. In addition, sensitivity of fine particle mass concentration to the changes of particulate ionic species (sulfate, nitrate, and ammonium) is estimated. It was found that water content in Seoul is mostly determined by the concentrations of the hygroscopic ionic species, especially, sulfate and ammonium, and ambient relative humidity.

저산소에 노출된 넙치(Paralichthys olivaceus)의 호흡대사와 혈액의 화학적 변화 (Changes in Respiratory Metabolism and Blood Chemistry of Olive Flounder Paralichthys olivaceus Exposed to Hypoxia)

  • 한지도;김흥윤
    • 한국수산과학회지
    • /
    • 제49권1호
    • /
    • pp.45-52
    • /
    • 2016
  • This experiment investigated changes in metabolic rate (MO2), critical oxygen saturation (Scrit), and blood chemistry of olive flounder Paralichthys olivaceus exposed to progressive hypoxia and returned to normoxic water at 20°C. The normoxic standard metabolic rate (SMR) and routine metabolic rate (RMR) were 69.5-83.9 and 70.2-156.4 mg O2 kg-1h-1, respectively based on fish weight. Scrit was 31.0% dissolved oxygen (DO) at 20°C. After returning the fish to 70% DO following exposure to hypoxia (20% DO), MO2 increased two-fold compared to the normoxic SMR and then decreased into the range of the RMR with time. Blood PO2 and plasma lactate decreased significantly after exposure to hypoxia (20% DO) and then increased as ambient oxygen saturation decreased. Cortisol levels increased as ambient oxygen saturation decreased, but the levels decreased rapidly in the range of the normoxic control when the fish were returned to ambient water with 70% DO. Plasma glucose levels increased when the fish were returned to normoxic water after exposure to a progressively more hypoxic condition.

Water-splitting Performance of TiO2 Nanotube Arrays Annealed in NH3 Ambient

  • Kim, Se-Im;Kim, Sung-Jin;Yang, Bee-Lyong
    • 한국세라믹학회지
    • /
    • 제48권2호
    • /
    • pp.200-204
    • /
    • 2011
  • Increase of surface area and decrease of band gap in $TiO_2$ semiconductors are significant to improve the efficiency of water splitting by photoelectrolysis. In this study $TiO_2$ nanotube arrays with ~7 um length and ~100 nm diameter were fabricated by an anodizing technique of titanium foils using DMSO (dimethyl sulfoxide)-based electrolytes. Then to control the band gap of the $TiO_2$ arrays, they were annealed at $550^{\circ}C$ for up to 180 min in $NH_3$ gas ambient. The samples annealed in $NH_3$ gas for 30 min and 60 min showed superior photo-conversion efficiency for water splitting under white and visible light. A $TiO_2$ nanotube annealed in $NH_3$ gas ambient for a period longer than 120 min showed 1 order higher leakage current. It is believed that the decrease of band gap and increase of conductivity in $TiO_2$ nanotube arrays due to $NH_3$ gas treatments result in the superior water-splitting performance.

상압 건조 공정을 이용한 다공성 세라믹스 구조체 내부에 소수성 실리카 에어로겔의 합성 (The Synthesis of Hydrophobic Silica Aerogel in the Macroporous Ceramic Structure by Ambient Drying Process)

  • 홍선욱;송인혁;박영조;윤희숙;한유동;황기영;이영우
    • 한국분말재료학회지
    • /
    • 제18권3호
    • /
    • pp.269-276
    • /
    • 2011
  • The synthesis behavior of nanoporous silica aerogel in the macroporous ceramic structure was observed using TEOS as a source material and glycerol as a dry control chemical additive (DCCA). Silica aerogel in the macroporous ceramic structure was synthesized via sono-gel process using hexamethyldiazane (HMDS) as a modification agent and n-hexane as a main solvent. The wet gel with a modified surface was dried at $105^{\circ}C$ under ambient pressure. The addition of glycerol appears to give the wet gel a more homogeneous microstructure. However, glycerol also retarded the rate of surface modification and solvent exchange. Silica aerogel completely filled the macroporous ceramic structure without defect in the condition of surface modification (20% HMDS/nhexane at 36hr).

계절에 따른 실험실 환경변화를 이용한 토크측정기의 온도 및 습도 감도계수 결정 (The Determination of Temperature and Humidity Sensitivity Coefficients of Torque Transducers using Seasonal Climatic Changes of Ambient Conditions in the Laboratory)

  • 무루게타;김민석;박연규;이호영
    • 한국정밀공학회지
    • /
    • 제32권2호
    • /
    • pp.185-190
    • /
    • 2015
  • This paper presents a new method to determine sensitivity coefficients of temperature and humidity of torque transducers by using a natural and seasonal variation of ambient conditions at the laboratory. We had measured the sensitivities of the torque transducers over almost one year using the KRISS 2 kN m torque standard machine. The sensitivity data acquired at various ambient conditions were processed using our measurement model to extract the sensitivity coefficients of temperature and humidity simultaneously with high precision. A comparison with a previous method using an environmental control chamber was carried out to test the feasibility of using our new method. Two results agreed within the uncertainty. We revealed that the torque measuring errors could be 8 times higher than the measurement and calibration capability of KRISS torque standard machine if the sensitivity changes due to the temperature and humidity are not properly corrected during a calibration.

원수 수질특성과 응집제 염기도에 따른 응집 pH 및 주입량의 영향 (The Effects of pH and Dosages According to Qualities of Raw Waters and Basicity of Coagulants)

  • 박노백;이범;전동걸;이영주;전항배
    • 상하수도학회지
    • /
    • 제24권5호
    • /
    • pp.581-593
    • /
    • 2010
  • The objectives of this study were to investigate the effects of raw water pH and basicity of coagulants on turbidity removal with several raw waters having different level of turbidity, alkalinity and pH. Raw waters were sampled from M, S and B water treatment plants(WTP) located at Miryang, Nakdong, Han river, respectively. Six coagulants which have different levels of basicity and aluminum contents were used for this evaluation. High basicity of the coagulant helped to properly control coagulation processes for treating turbid and low alkali raw water. It was difficult for operators to determine optimum coagulant dose for high basicity coagulants, since residual turbidity tended to decrease continuously as coagulant dose increased. Turbidity removal efficiencies with high basicity coagulants(E and F) were higher than the other coagulants at ambient pH for the M WTP. Turbidity removal efficiencies, however, at adjusted pH 7.0 showed similar among six coagulants. Residual turbidity kept low at excess dosages with high basicity coagulants. Optimum coagulant dosages at adjusted pH 7.0 showed higher than those at ambient pH in M WTP. On the contrary in B WTP, optimum coagulant dosage at ambient pH were higher than that at adjusted pH 7.0.

전력소자를 사용한 LED 조명 디밍에 관한 연구 (A Study on LED Light Dimming using Power Device)

  • 김동식;채상훈
    • 전자공학회논문지
    • /
    • 제51권7호
    • /
    • pp.89-95
    • /
    • 2014
  • 주위 밝기 및 환경에 따라서 LED 조명등의 밝기를 조절하기 위한 장치를 PWM 기술과 전력 소자를 이용하여 구현하였다. 주위의 광량 측정을 위하여 CdS 센서를 사용하였으며, PWM 신호 생성을 위하여 MCU를 사용하여 제어 보드를 설계한 다음 광량에 따라 듀티비를 조절하였다. 고전압, 대전류를 필요로 하는 LED 조명등을 디밍하기 위하여 전력 소자를 사용하여 DC 전원장치의 출력을 스위칭하였으며, PowerMOSFET, IGBT, PowerBJT를 각각 사용하여 특성을 서로 비교하였다. 실험결과 선형성 면에서는 IGBT가 양호하였으나, 효율 및 가격 면까지 고려하면 PowerBJT도 우수한 특성을 보였다.

무공해 자동차용 수열원 히트펌프 시스템의 난방 성능에 관한 실험적 연구 (An Experimental Study on the Heating Performance of Coolant Heat Source Heat Pump System for Zero Emission Vehicles)

  • 이대웅
    • 한국자동차공학회논문집
    • /
    • 제22권7호
    • /
    • pp.57-62
    • /
    • 2014
  • This study presented the feasibility of a coolant heat-source heat pump system as an alternative heating system for electrically driven vehicles. Heat pumps are among the most environmentally friendly and efficient heating technologies in residential buildings. In various countries, electric mobiles devices such as EV, PHEV, and FCEV, have been mainly concerned with heat pumps for new mobile markets. The experiments herein were conducted for various ambient temperatures and coolant temperatures to reflect the winter season. The system, a coolant heat-source heat pump, consisted of an inside heat exchanger, an outside heat exchanger, a motor driven compressor, an electronic expansion valve, and plumbing parts. For the experimental results, the maximum heating capacity and air discharge temperature are up to 6.3 kW and $62^{\circ}C$ respectively at an ambient temperature of $10^{\circ}C$, and coolant at $10^{\circ}C$. However, at $-20^{\circ}C$ ambient temperature and $-10^{\circ}C$ coolant temperature, conditions were insufficient to warm the cabin as the air discharge temperature was $13^{\circ}C$.