• 제목/요약/키워드: Amber force field

검색결과 9건 처리시간 0.022초

An Amber Force Field for S-Nitrosoethanethiol That Is Transferable to S-Nitrosocysteine

  • Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권10호
    • /
    • pp.2903-2908
    • /
    • 2010
  • Protein S-nitrosation is common in cells under nitrosative stress. In order to model proteins with S-nitrosocysteine (CysSNO) residues, we first developed an Amber force field for S-nitrosoethanethiol (EtSNO) and then transferred it to CysSNO. Partial atomic charges for EtSNO and CysSNO were obtained by a restrained electrostatic potential approach to be compatible with the Amber-99 force field. The force field parameters for bonds and angles in EtSNO were obtained from a generalized Amber force field (GAFF) by running the Antechamber module of the Amber software package. The GAFF parameters for the CC-SN and CS-NO dihedrals were not accurate and thus determined anew. The CC-SN and CS-NO torsional energy profiles of EtSNO were calculated quantum mechanically at the level of B3LYP/cc-pVTZ//HF/6-$31G^*$. Torsional force constants were obtained by fitting the theoretical torsional energies with those obtained from molecular mechanics energy minimization. These parameters for EtSNO reproduced, to a reasonable accuracy, the corresponding torsional energy profiles of the capped tripeptide ACE-CysSNO-NME as well as their structures obtained from quantum mechanical geometry optimization. A molecular dynamics simulation of myoglobin with a CysSNO residue produced a well-behaved trajectory demonstrating that the parameters may be used in modeling other S-nitrosated proteins.

Effects of force fields for refining protein NMR structures with atomistic force fields and generalized-Born implicit solvent model

  • Jee, Jun-Goo
    • 한국자기공명학회논문지
    • /
    • 제18권1호
    • /
    • pp.24-29
    • /
    • 2014
  • Atomistic molecular dynamics (MD) simulation has become mature enabling close approximation of the real behaviors of biomolecules. In biomolecular NMR field, atomistic MD simulation coupled with generalized implicit solvent model (GBIS) has contributed to improving the qualities of NMR structures in the refinement stage with experimental restraints. Here all-atom force fields play important roles in defining the optimal positions between atoms and angles, resulting in more precise and accurate structures. Despite successful applications in refining NMR structure, however, the research that has studied the influence of force fields in GBIS is limited. In this study, we compared the qualities of NMR structures of two model proteins, ubiquitin and GB1, under a series of AMBER force fields-ff99SB, ff99SB-ILDN, ff99SB-NMR, ff12SB, and ff13-with experimental restraints. The root mean square deviations of backbone atoms and packing scores that reflect the apparent structural qualities were almost indistinguishable except ff13. Qualitative comparison of parameters, however, indicates that ff99SB-ILDN is more recommendable, at least in the cases of ubiquitin and GB1.

Force Field Parameters for 3-Nitrotyrosine and 6-Nitrotryptophan

  • Myung, Yoo-Chan;Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • 제31권9호
    • /
    • pp.2581-2587
    • /
    • 2010
  • Nitration of tyrosine and tryptophan residues is common in cells under nitrative stress. However, physiological consequences of protein nitration are not well characterized on a molecular level due to limited availability of the 3D structures of nitrated proteins. Molecular dynamics (MD) simulation can be an alternative tool to probe the structural perturbations induced by nitration. In this study we developed molecular mechanics parameters for 3-nitrotyrosine (NIY) and 6-nitrotryptophan (NIW) that are compatible with the AMBER-99 force field. Partial atomic charges were derived by using a multi-conformational restrained electrostatic potential (RESP) methodology that included the geometry optimized structures of both $\alpha$- and $\beta$-conformers of a capped tripeptide ACE-NIY-NME or ACE-NIW-NME. Force constants for bonds and angles were adopted from the generalized AMBER force field. Torsional force constants for the proper dihedral C-C-N-O and improper dihedral C-O-N-O of the nitro group in NIY were determined by fitting the torsional energy profiles obtained from quantum mechanical (QM) geometry optimization with those from molecular mechanical (MM) energy minimization. Force field parameters obtained for NIY were transferable to NIW so that they reproduced the QM torsional energy profiles of ACE-NIW-NME accurately. Moreover, the QM optimized structures of the tripeptides containing NIY and NIW were almost identical to the corresponding structures obtained from MM energy minimization, attesting the validity of the current parameter set. Molecular dynamics simulations of thioredoxin nitrated at the single tyrosine and tryptophan yielded well-behaved trajectories suggesting that the parameters are suitable for molecular dynamics simulations of a nitrated protein.

Probing α/β Balances in Modified Amber Force Fields from a Molecular Dynamics Study on a ββα Model Protein (1FSD)

  • Yang, Changwon;Kim, Eunae;Pak, Youngshang
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권6호
    • /
    • pp.1713-1719
    • /
    • 2014
  • 1FSD is a 28-residue designed protein with a ${\beta}{\beta}{\alpha}$ motif. Since this protein displays most essential features of protein structures in such a small size, this model protein can be an outstanding system for evaluating the balance in the propensity of the secondary structures and the quality of all-atom protein force fields. Particularly, this protein would be difficult to fold to its correct native structure without establishing proper balances between the secondary structure elements in all-atom energy functions. In this work, a series of the recently optimized five amber protein force fields [$ff03^*$, $f99sb^*$-ildn, ff99sb-${\phi}^{\prime}$-ildn, ff99sb-nmr1-ildn, ff99sb-${\Phi}{\Psi}$(G24, CS)-ildn] were investigated for the simulations of 1FSD using a conventional molecular dynamics (MD) and a biased-exchange meta-dynamics (BEMD) methods. Among those tested force fields, we found that ff99sb-nmr1-ildn and ff99sb-${\Phi}{\Psi}$(G24, CS)-ildn are promising in that both force fields can locate the native state of 1FSD with a high accuracy (backbone rmsd ${\leq}1.7{\AA}$) in the global free energy minimum basin with a reasonable energetics conforming to a previous circular dichroism (CD) experiment. Furthermore, both force fields led to a common set of two distinct folding pathways with a heterogeneous nature of the transition state to the folding. We anticipate that these force fields are reasonably well balanced, thereby transferable to many other protein folds.

계산화학적 방법을 통한 β-D-glucopyranose 구조 연구 (Computational Studies of the β-D Glucopyranose Structure)

  • 양지현;김진아;이상민;안익성;민병진
    • 대한화학회지
    • /
    • 제57권5호
    • /
    • pp.554-559
    • /
    • 2013
  • 본 연구에서는 ${\beta}$-D-glucopyranose 분자의 hydroxymethyl group의 두 torsion angle의 변화에 따른 포텐셜 에너지의 변화를 진공 상태와 implicit water 상태에서 연구하였으며 이를 통해 Solvation Energy가 구조에 미치는 영향에 대해서 알아보았다. 계산에 사용한 프로그램은 AMBER package였으며, force field는 GLYCAM_06을 사용하였다. Solvation model은 Hawkins, Cramer, Truhlar 등이 제안한 generalized Born model을 사용하였다. 계산 결과, methyl hydroxyl group 내의 hydroxyl group이 고리구조의 hydroxyl group과 강한 수소결합이 가능한 영역에서 많은 변화가 일어났다. 이를 통해 solvation effect로 인해서 수소 결합의 중요성이 감소했다는 결론을 내렸다.

Refinement of protein NMR structures using atomistic force field and implicit solvent model: Comparison of the accuracies of NMR structures with Rosetta refinement

  • Jee, Jun-Goo
    • 한국자기공명학회논문지
    • /
    • 제26권1호
    • /
    • pp.1-9
    • /
    • 2022
  • There are two distinct approaches to improving the quality of protein NMR structures during refinement: all-atom force fields and accumulated knowledge-assisted methods that include Rosetta. Mao et al. reported that, for 40 proteins, Rosetta increased the accuracies of their NMR-determined structures with respect to the X-ray crystal structures (Mao et al., J. Am. Chem. Soc. 136, 1893 (2014)). In this study, we calculated 32 structures of those studied by Mao et al. using all-atom force field and implicit solvent model, and we compared the results with those obtained from Rosetta. For a single protein, using only the experimental NOE-derived distances and backbone torsion angle restraints, 20 of the lowest energy structures were extracted as an ensemble from 100 generated structures. Restrained simulated annealing by molecular dynamics simulation searched conformational spaces with a total time step of 1-ns. The use of GPU-accelerated AMBER code allowed the calculations to be completed in hours using a single GPU computer-even for proteins larger than 20 kDa. Remarkably, statistical analyses indicated that the structures determined in this way showed overall higher accuracies to their X-ray structures compared to those refined by Rosetta (p-value < 0.01). Our data demonstrate the capability of sophisticated atomistic force fields in refining NMR structures, particularly when they are coupled with the latest GPU-based calculations. The straightforwardness of the protocol allows its use to be extended to all NMR structures.

Effects of generalized-Born implicit solvent models in NMR structure refinement

  • Jee, Jun-Goo
    • 한국자기공명학회논문지
    • /
    • 제17권1호
    • /
    • pp.11-18
    • /
    • 2013
  • Rapid advances of computational power and method have made it practical to apply the time-consuming calculations with all-atom force fields and sophisticated potential energies into refining NMR structure. Added to the all-atom force field, generalized-Born implicit solvent model (GBIS) contributes substantially to improving the qualities of the resulting NMR structures. GBIS approximates the effects that explicit solvents bring about even with fairly reduced computational times. Although GBIS is employed in the final stage of NMR structure calculation with experimental restraints, the effects by GBIS on structures have been reported notable. However, the detailed effect is little studied in a quantitative way. In this study, we report GBIS refinements of ubiquitin and GB1 structures by six GBIS models of AMBER package with experimental distance and backbone torsion angle restraints. Of GBIS models tested, the calculations with igb=7 option generated the closest structures to those determined by X-ray both in ubiquitin and GB1 from the viewpoints of root-mean-square deviations. Those with igb=5 yielded the second best results. Our data suggest that the degrees of improvements vary under different GBIS models and the proper selection of GBIS model can lead to better results.

Systematic Assessment of the Effects of an All-Atom Force Field and the Implicit Solvent Model on the Refinement of NMR Structures with Subsets of Distance Restraints

  • Jee, Jun-Goo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권7호
    • /
    • pp.1944-1950
    • /
    • 2014
  • Employment of a time consuming, sophisticated calculation using the all-atom force field and generalized-Born implicit solvent model (GBIS) for refinement of NMR structures has become practical through advances in computational methods and capacities. GBIS refinement improves the qualities of the resulting NMR structures with reduced computational times. However, the contribution of GBIS to NMR structures has not been sufficiently studied in a quantitative way. In this paper, we report the effects of GBIS on the refined NMR structures of ubiquitin (UBQ) and GB1 with subsets of distance restraints derived from experimental data. Random omission prepared a series of distance restraints 0.05, 0.1, 0.3, 0.5, and 0.7 times smaller. For each number, we produced five different restraints for statistical analysis. We then recalculated the NMR structures using CYANA software, followed by GBIS refinements using the AMBER package. GBIS improved both the precision and accuracy of all the structures, but to varied levels. The degrees of improvement were significant when the input restraints were insufficient. In particular, GBIS enabled GB1 to form an accurate structure even with distance restraints of 5%, revealing that the root-mean-square deviation was less than 1 ${\AA}$ from the X-ray backbone structure. We also showed that the efficiency of searching the conformational space was more important for finding accurate structures with the calculation of UBQ with 5% distance restraints than the number of conformations generated. Our data will provide a meaningful guideline to judge and compare the structural improvements by GBIS.

Use of Conformational Space Annealing in Molecular Docking

  • Lee, Kyoung-Rim;Czaplewski, Cezary;Kim, Seung-Yeon;Lee, Joo-Young
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2004년도 The 3rd Annual Conference for The Korean Society for Bioinformatics Association of Asian Societies for Bioinformatics 2004 Symposium
    • /
    • pp.221-233
    • /
    • 2004
  • Molecular docking falls into the general category of global optimization problems since its main purpose is to find the most stable complex consisting of a receptor and its ligand. Conformational space annealing (CSA), a powerful global optimization method, is incorporated with the Tinker molecular modeling package to perform molecular docking simulations of six receptor-ligand complexes (3PTB, 1ULB, 2CPP, 1STP, 3CPA and 1PPH) from the Protein Data Bank. In parallel, Monte Carlo with minimization (MCM) method is also incorporated into the Tinker package for comparison. The energy function, consisting of electrostatic interactions, van der Waals interactions and torsional energy terms, is calculated using the AMBER94 all-atom empirical force field. Rigid docking simulations for all six complexes and flexible docking simulations for three complexes (1STP, 3CPA and 1PPH) are carried out using the CSA and the MCM methods. The simulation results show that the docking procedures using the CSA method generally find the most stable complexes as well as the native -like complexes more efficiently and accurately than those using the MCM, demonstrating that CSA is a promising search method for molecular docking problems.

  • PDF