• Title/Summary/Keyword: Alveolar ridge

Search Result 270, Processing Time 0.028 seconds

Lateral alveolar ridge augmentation procedure using subperiosteal tunneling technique: a pilot study

  • Kakar, Ashish;Kakar, Kanupriya;Sripathi Rao, Bappanadu H.;Lindner, Annette;Nagursky, Heiner;Jain, Gaurav;Patney, Aditya
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.40
    • /
    • pp.3.1-3.8
    • /
    • 2018
  • Background: In this research article, we evaluate the use of sub-periosteal tunneling (tunnel technique) combined with alloplastic in situ hardening biphasic calcium phosphate (BCP, a compound of β-tricalcium phosphate and hydroxyapatite) bone graft for lateral augmentation of a deficient alveolar ridge. Methods: A total of 9 patients with deficient mandibular alveolar ridges were included in the present pilot study. Ten lateral ridge augmentation were carried out using the sub-periosteal tunneling technique, including a bilateral procedure in one patient. The increase in ridge width was assessed using CBCT evaluation of the ridge preoperatively and at 4 months postoperatively. Histological assessment of the quality of bone formation was also carried out with bone cores obtained at the implant placement re-entry in one patient. Results: The mean bucco-lingual ridge width increased in average from 4.17 ± 0.99 mm to 8.56 ± 1.93 mm after lateral bone augmentation with easy-graft CRYSTAL using the tunneling technique. The gain in ridge width was statistically highly significant (p = 0.0019). Histomorphometric assessment of two bone cores obtained at the time of implant placement from one patient revealed 27.6% new bone and an overall mineralized fraction of 72.3% in the grafted area 4 months after the bone grafting was carried out. Conclusions: Within the limits of this pilot study, it can be concluded that sub-periosteal tunneling technique using in situ hardening biphasic calcium phosphate is a valuable option for lateral ridge augmentation to allow implant placement in deficient alveolar ridges. Further prospective randomized clinical trials will be necessary to assess its performance in comparison to conventional ridge augmentation procedures.

SINUS GRAFT AND VERTICAL AUGMENTATION OF MAXILLARY POSTERIOR ALVEOLAR RIDGE USING MANDIBULAR RAMAL BLOCK BONE GRAFT (상악동 골이식술과 하악지 자가골 블록을 이용한 상악 구치부 치조제 수직증강술)

  • Kim, Kyoung-Won;Lee, Eun-Young
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.32 no.3
    • /
    • pp.276-281
    • /
    • 2010
  • The maxillary posterior area is the most challenging site for the dental implant. After missing of teeth on maxillary posterior area due to periodontal problems, the remaining alveolar ridge is usually very thin because of not only pneumatization of maxillary sinus but also destruction of alveolar bone. The maxillary sinus bone graft procedure is one of the most predictable and successful treatments for the rehabilitation of atrophic and pneumatized endentulous posterior maxilla. But, in case of severe destruction of alveolar bone due to periodontal problems, very long crown length is still remaining problem after successful sinus graft procedures. We performed vertical augmentation of maxillary posterior alveolar ridge using mandibular ramal block bone graft with simultaneous sinus graft. After this procedures, we could get more favorable crown-implant ratio of final prosthodontic appliance and more satisfactory results on biomechanics. This is a preliminary report of the vertical augmentation of maxillary posterior alveolar ridge using mandibular ramal block bone graft with simultaneous sinus graft, so requires more long-term follow up and further studies.

Improving oral rehabilitation through the preservation of the tissues through alveolar preservation

  • Afrashtehfar, Kelvin Ian;Kurtzman, Gregori Michael;Mahesh, Lanka
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.3
    • /
    • pp.174-178
    • /
    • 2012
  • When performing a tooth extraction, imminent collapse of the tissue by resorption and remodeling of the socket is a natural occurrence. The procedure for the preservation of the alveolar ridge has been widely described in the dental literatures and aims to maintain hard and soft tissues in the extraction site for optimal rehabilitation either with conventional fixed or removable prosthetics or implant-supported prosthesis.

Combined application of roll flap and combination onlay-interpositional graft to enhance esthetics of maxillary anterior fixed partial denture: A case report

  • Oh, Sang-Chun;Cha, Dong-Hee;Lee, Jae-In
    • The Journal of Advanced Prosthodontics
    • /
    • v.8 no.1
    • /
    • pp.70-74
    • /
    • 2016
  • In the maxillary anterior region, reconstruction of the localized alveolar ridge defect is very important in enhancing the esthetics of fixed partial denture. A 40-year-old female patient presented with a chief complaint of the inconvenience and unesthetic problem of 3-unit maxillary anterior prosthesis due to alveolar ridge resorption. After removal of old prosthesis, intraoral examination revealed moderate (buccolingually 4 mm) ridge deficiency in missing tooth region, leading to the diagnosis of Class I alveolar ridge defect. One of the reconstruction techniques to overcome this problem might be a technique that combines two types of soft tissue augmentation techniques. The purpose of this paper was to demonstrate the new combined technique of roll flap and combination onlay-interpositional graft utilized to acquire sufficient dimension of recipient area by one time of operation and to present the esthetic improvement of fixed partial denture by using this procedure in case of maxillary anterior localized ridge defect.

The use of granulation tissue for the esthetic implant restoration for missing tooth due to alveolar bone loss (치조골 소실로 발치하게 된 치아의 심미적인 임플란트 수복을 위한 granulation tissue의 활용)

  • Lee, Chang Kyun
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.30 no.1
    • /
    • pp.33-39
    • /
    • 2021
  • When maxillary anterior tooth is extracted due to alveolar bone loss, the augmentation of alveolar ridge is very important for esthetic implant restoration. Because alveolar bone loss increases after extraction, the ridge preservation performed right after tooth extraction is meaningful for esthetic implant restoration. However, no achievement of primary closure during ridge preservation can negatively affect bone regeneration. To overcome this problem, we can use granulation tissue in the extraction socket for primary closure. This case report confirmed that primary closure using granulation tissue resulted in not only ridge preservation but also ridge augmentation by providing an environment more advantageous of bone regeneration than the open wound.

Cone-beam computed tomographic evaluation of dimensional hard tissue changes following alveolar ridge preservation techniques of different bone substitutes: a systematic review and meta-analysis

  • Pickert, Finn Niclas;Spalthoff, Simon;Gellrich, Nils-Claudius;Tarraga, Juan Antonio Blaya
    • Journal of Periodontal and Implant Science
    • /
    • v.52 no.1
    • /
    • pp.3-27
    • /
    • 2022
  • Purpose: This study was conducted to evaluate and compare the effects of different graft materials used in alveolar ridge preservation on dimensional hard tissue changes of the alveolar ridge, assessed using cone-beam computed tomography (CBCT) scans. Methods: A systematic electronic search of MEDLINE and the Cochrane Central Register of Controlled Trials and a manual search were conducted from November 2019 until January 2020. Randomized controlled trials were included if they assessed at least 1 variable related to vertical or horizontal hard tissue changes measured using CBCT scans. After a qualitative analysis of the included studies, subgroups were formed according to the graft material used, and a quantitative analysis was performed for 5 outcome variables: changes in vertical alveolar bone height at 2 points (midbuccal and midpalatal/midlingual) and changes in horizontal (buccolingual) alveolar bone width at 3 different levels from the initial crest height (1, 3, and 5 mm). Results: The search resulted in 1,582 studies, and after an independent 3-stage screening, 16 studies were selected for qualitative analysis and 9 for quantitative analysis. The metaanalysis showed a significantly (P<0.05) lower reduction of alveolar ridge dimensions for the xenogenic subgroup than in the allogenic subgroup, both vertically at the midbuccal aspect (weighted mean difference [WMD]=-0.20; standard error [SE]=0.26 vs. WMD=-0.90; SE=0.22) as well as horizontally at 1 mm (WMD=-1.32; SE=0.07 vs. WMD=-2.99; SE=0.96) and 3 mm (WMD=-0.78; SE=0.11 vs. WMD=-1.63; SE=0.40) from the initial crest height. No statistical analysis could be performed for the autogenic subgroup because it was not reported in sufficient numbers. Conclusions: Less vertical and horizontal bone reduction was observed when xenogenic graft materials were used than when allogenic graft materials were used; however, the loss of alveolar ridge dimensions could not be completely prevented by any graft material.

Horizontal alteration of anterior alveolar ridge after immediate implant placement: A retrospective cone beam computed tomography analysis

  • Hyun, Young Keun;Lee, Chung Yun;Keerthana, Subramanian;Ramasamy, Selvaponpriya;Song, So-Yeon;Shim, Ji Suk;Ryu, Jae Jun
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.2
    • /
    • pp.117-125
    • /
    • 2021
  • PURPSE. The aim of this study was to evaluate the labio-lingual alterations of the alveolar bone where the implant was placed immediately after tooth extraction. MATERIALS AND METHODS. Implants were placed immediately after tooth extraction on anterior alveolar ridges in the maxilla and mandible. The pinguide system was used to help determine the location and path of implants during the surgical process. The horizontal distance from implants to the outer border of alveolar bone was measured at the rim and middle of the implants in the cone beam computed tomography images. The alteration of alveolar bone was evaluated comparing the horizontal distances measured immediately after surgery and 3 months after surgery. RESULTS. The results show that more resorption occurred towards the labial bone than the lingual bone in the maxilla. A similar amount of labial and lingual bone resorption was observed in the mandible. CONCLUSION. Considering the horizontal alteration of alveolar bone, labio-lingual positioning of the implant towards the lingual bone in the maxilla and at the center of the alveolar ridge in the mandible is recommended when it is placed immediately after tooth extraction.

A comparison of different compressive forces on graft materials during alveolar ridge preservation

  • Cho, In-Woo;Park, Jung-Chul;Shin, Hyun-Seung
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.1
    • /
    • pp.51-63
    • /
    • 2017
  • Purpose: Following tooth extraction, alveolar ridge preservation (ARP) can maintain the dimensions of ridge height and width. Although previous studies have demonstrated the effects of ARP, few if any studies have investigated the compressive force applied during grafting. The aim of this study was to determine the effects of different compressive forces on the graft materials during ARP. Methods: After tooth extraction, sockets were filled with deproteinized bovine bone mineral with 10% porcine collagen and covered by a resorbable collagen membrane in a double-layered fashion. The graft materials were compressed using a force of 5 N in the test group (n=12) and a force of 30 N in the control group (n=12). A hidden X suture was performed to secure the graft without primary closure. Cone-beam computed tomography (CBCT) was performed immediately after grafting and 4 months later, just before implant surgery. Tissue samples were retrieved using a trephine bur from the grafted sites during implant surgery for histologic and histomorphometric evaluations. Periotest values (PTVs) were measured to assess the initial stability of the dental implants. Results: Four patients dropped out from the control group and 20 patients finished the study. Both groups healed without any complications. The CBCT measurements showed that the ridge volume was comparably preserved vertically and horizontally in both groups (P>0.05). Histomorphometric analysis demonstrated that the ratio of new bone formation was significantly greater in the test group (P<0.05). The PTVs showed no significant differences between the 2 groups (P>0.05). Conclusions: The application of a greater compressive force on biomaterials during ARP significantly enhanced new bone formation while preserving the horizontal and vertical dimensions of the alveolar ridge. Further studies are required to identity the optimal compressive force for ARP.

Vertical Augmentation of Maxillary Posterior Alveolar Ridge Using Allogenic Block Bone Graft and Simultaneous Maxillary Sinus Graft

  • Lee, Eun-Young;Kim, Eun-Suk;Kim, Kyoung-Won
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.36 no.5
    • /
    • pp.224-229
    • /
    • 2014
  • The maxillary posterior area is the most challenging site for the dental implant. Although the sinus graft is a predictable and successful technique for rehabilitation of atrophic and pneumatized posterior maxilla, when there is severe destruction of alveolar bone, a very long crown length remains challenging after successful dental implants installation with sinus graft. We performed vertical augmentation of the maxillary posterior alveolar ridge using the allogenic block bone graft with a simultaneous sinus graft using allogenic and heterogenic bone chips. After about six months, we installed the dental implant. After this procedure, we achieved a more favorable crown-implant fixture ratio and better results clinically and biomechanically. This is a preliminary report of vertical augmentation of maxillary posterior alveolar ridge using allogenic block bone graft and simultaneous maxillary sinus graft. Further research requires longer observation and more patients.

Atrophic Alveolar Ridge Augmentation using Autogenous Block Bone Graft for Implant Placement (임플란트 식립을 위해 블록형 자가골이식을 이용한 퇴축된 치조골의 재건)

  • Chee, Young-Deok;Cho, Jin-Hyoung
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.2
    • /
    • pp.161-171
    • /
    • 2006
  • Endosseous implants have restored normal function and dental health to many patients. When implants were introduced as an effective treatment modality, their efficacy was limited by the amount of available bone. Today, various grafting procedures can surgically create bone width and volume. Implants can be placed in more ideal locations for successful prosthetic reconstruction. The use of autogenous bone grafts represents the "gold standard" for bone augmentation procedures. Either intraoral or extraoral sites may be considered for donor sites. Alveolar ridge augmentation using autogenous bone block, can be done during implant placement or staged with implant placement, after bone graft healing. In the staged technique, a better implant positioning and the use of wide diameter implants are possible. Alveolar ridge augmentation using autogenous block graft is a predictable way of treatment, for the atrophic alveolar ridge before implant placement. The cases presented in this article clinically demonstrate the efficacy of using a autogenous block graft in generating effective new bone fill for dental implant placement.