DOI QR코드

DOI QR Code

Lateral alveolar ridge augmentation procedure using subperiosteal tunneling technique: a pilot study

  • Kakar, Ashish (Yenepoya University Dental College, University Road) ;
  • Kakar, Kanupriya (Private Practice) ;
  • Sripathi Rao, Bappanadu H. (Yenepoya University Dental College, University Road) ;
  • Lindner, Annette (Institute for Clinical Chemistry and Laboratory Medicine, Medical Center, University of Freiburg) ;
  • Nagursky, Heiner (Institute for Clinical Chemistry and Laboratory Medicine, Medical Center, University of Freiburg) ;
  • Jain, Gaurav (Dental Surgery, Indraprastha Apollo Hospitals) ;
  • Patney, Aditya (Mahajan Imaging Center)
  • 투고 : 2017.08.16
  • 심사 : 2018.01.18
  • 발행 : 2018.12.31

초록

Background: In this research article, we evaluate the use of sub-periosteal tunneling (tunnel technique) combined with alloplastic in situ hardening biphasic calcium phosphate (BCP, a compound of β-tricalcium phosphate and hydroxyapatite) bone graft for lateral augmentation of a deficient alveolar ridge. Methods: A total of 9 patients with deficient mandibular alveolar ridges were included in the present pilot study. Ten lateral ridge augmentation were carried out using the sub-periosteal tunneling technique, including a bilateral procedure in one patient. The increase in ridge width was assessed using CBCT evaluation of the ridge preoperatively and at 4 months postoperatively. Histological assessment of the quality of bone formation was also carried out with bone cores obtained at the implant placement re-entry in one patient. Results: The mean bucco-lingual ridge width increased in average from 4.17 ± 0.99 mm to 8.56 ± 1.93 mm after lateral bone augmentation with easy-graft CRYSTAL using the tunneling technique. The gain in ridge width was statistically highly significant (p = 0.0019). Histomorphometric assessment of two bone cores obtained at the time of implant placement from one patient revealed 27.6% new bone and an overall mineralized fraction of 72.3% in the grafted area 4 months after the bone grafting was carried out. Conclusions: Within the limits of this pilot study, it can be concluded that sub-periosteal tunneling technique using in situ hardening biphasic calcium phosphate is a valuable option for lateral ridge augmentation to allow implant placement in deficient alveolar ridges. Further prospective randomized clinical trials will be necessary to assess its performance in comparison to conventional ridge augmentation procedures.

키워드

참고문헌

  1. Araujo MG, Sukekava J, Wennstrom J, Lindhe J (2005) Ridge alterations following implant placement in fresh extraction sockets: an experimental study in the dog. J Clin Periodontol 32:645-652 https://doi.org/10.1111/j.1600-051X.2005.00726.x
  2. Van der Weijden F, Dell' Acqua DE, Slot DE (2009) Alveolar bone dimensional changes of post extraction sockets in humans: a systematic review. J Clin Periodontol 36(12):1048-1058 https://doi.org/10.1111/j.1600-051X.2009.01482.x
  3. Buser D (ed) (2009) 20 years of guided bone regeneration in implant dentistry, 2nd edn. Quintessence Pub Co, Chicago
  4. Jensen SS, Terheyden H (2009) Bone augmentation procedures in localized defects in the alveolar ridge: clinical results with different bone grafts and bone substitute materials. Int J Oral Maxillofac Implants 24(Supple):218-236
  5. LeGeros RZ (2002) Properties of osteoconductive biomaterials: calcium phosphates. Clin Orthop Relat Res 395:81-98 https://doi.org/10.1097/00003086-200202000-00009
  6. Artzi Z, Weinreb M, Givol N, Rohrer MD, Nemcovsky CE, Prasad HS, Tal H (2004) Biomaterial resorptionrateand healing site morphology of inorganic bovine bone and ${\beta}$-tricalciumphosphatein the canine: a 24 month longitudinal histologic study and morphometric analysis. Int J Oral Maxillofac Implants 19(3):357-368
  7. Jensen SS, Broggini N, Hjorting-Hansen E, Schenk R, Buser D (2006) Bone healing and graft resorption of autograft, anorganic bovine bone and ${\beta}$-tricalcium phosphate. A histologic and histomorphometric study in the mandibles of minipigs. Clin Oral Implants Res 17(3):237-243 Nair 2006 https://doi.org/10.1111/j.1600-0501.2005.01257.x
  8. Nair PNR, Luder H-U, Maspero FA, Fischer JH, Schug J (2006) Biocompatibility of b-tricalcium phosphateroot replicas in porcine tooth extraction sockets-a correlativehistological, ultrastructural, and X-ray microanalytical pilot study. J Biomater Appl 20(4):307-324 https://doi.org/10.1177/0885328206054167
  9. Ruffieux K (2014) A new syringe-delivered, moldable, alloplastic bone graft substitute. Compend Contin Educ Dent 35(4 Suppl):8-10
  10. Buser D, Dula K, Hess D, Hirt HP, Belser UC (1999) Localized ridge augmentation with autografts and barrier membranes. Periodontol 19:151-163 https://doi.org/10.1111/j.1600-0757.1999.tb00153.x
  11. Scipioni A, Bruschi GB, Calesini G (1994) The edentulous ridge expansion technique: a five-year study. Int J Periodontics Restorative Dent 14(5):451-459
  12. Yun KI, Choi H, Wright RF, Ahn HS, Chang BM, Kim HJ (2016) Efficacy of alveolar vertical distraction osteogenesis and autogenous bone grafting for dental implants: systematic review and meta-analysis. Int J Oral Maxillofac Implants 31(1):26-36 https://doi.org/10.11607/jomi.4479
  13. Proussaefs P, Lozada J, Rohrer MD (2002) A clinical and histologic evaluation of a block onlay graft in conjunction with autogenous particulate and inorganic bovine material: a case report. Int J Periodontics Restorative Dent 22:567
  14. Restoy-Lozano A, Dominguez-Mompell JL, Infante-Cossio P, Lara-Chao J, Espin-Galvez F, Lopez-Pizarro V (2015) Reconstruction of mandibular vertical defects for dental implants with autogenous bone block grafts using a tunnel approach: clinical study of 50 cases. Int J Oral Maxillofac Surg 44(11):1416-1422 https://doi.org/10.1016/j.ijom.2015.05.019
  15. Khoury F, Hanser T (2015) Mandibular bone block harvesting from the retromolar region: a 10-year prospective clinical study. Int J Oral Maxillofac Implants 30(3):688-697 https://doi.org/10.11607/jomi.4117
  16. Jeong SM, Choi BH, Li J, Xuan F (2008) Simultaneous flapless implant placement and peri-implant defect correction: an experimental pilot study in dogs. J Periodontol 79(5):876-880 https://doi.org/10.1902/jop.2008.070539
  17. Block MS, Degen M (2004) Horizontal ridge augmentation using human mineralized particulate bone: preliminary results. J Oral Maxillofac Surg 62(9 Suppl 2):67-72 https://doi.org/10.1016/j.joms.2004.05.209
  18. Hasson O (2007) Augmentation of deficient lateral alveolar ridge using the subperiosteal tunneling dissection approach. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 103(3):14-19 https://doi.org/10.1016/j.tripleo.2006.10.019
  19. Leventis MD, Fairbairn P, Kakar A, Leventis AD, Margaritis V, Luckerath W, Horowitz RA, Rao BH, Lindner A, Nagursky H (2016) Minimally invasive alveolar ridge preservation utilizing an in situ hardening ${\beta}$-tricalcium phosphate bone substitute: a multicenter case series. Int J Dent 2016:5406736. https://doi.org/10.1155/2016/5406736
  20. Marx RE, Shellenberger T, Wimsatt J et al (2002) Severely resorbed mandible: predictable reconstruction with soft tissue matrix expansion (tent pole) grafts. J Oral Maxillofac Surg 60:878 https://doi.org/10.1053/joms.2002.33856
  21. Kfir E, Kfir V, Eliav E, Kaluski E (2007) Minimally invasive guided bone regeneration. J Oral Implantol 33:205-210 https://doi.org/10.1563/1548-1336(2007)33[205:MIGBR]2.0.CO;2
  22. Nevins ML, Mellonig JT (2008) Site development for implant placement: regenerative and esthetic techniques in oral plastic surgery. In: Lynch SE, Marx RE, Nevins M, Wisner-Lynch LA (eds) Tissue engineering: applications in oral and maxillofacial surgery and periodontics, 2nd edn. Quintessence, Chicago, pp 119-131
  23. Simion M, Rocchietta I, Kim D, Nevins M, Fiorellini J (2006) Vertical ridge augmentation by means of deproteinized bovine bone block and recombinant human platelet-derived growth factor-BB: a histologic study in a dog model. Int J Periodontics Restorative Dent 26(5):415-423
  24. Nevins ML, Camelo M, Schupbach P, Kim DM, Camelo JM, Nevins M (2009) Human histologic evaluation of mineralized collagen bone substitute and recombinant platelet-derived growth factor-BB to create bone for implant placement in extraction socket defects at 4 and 6 months: a case series. Int J Periodontics Restorative Dent 29(2):129-139
  25. Rocchietta I, Dellavia C, Nevins M, Simion M (2007) Bone regenerated via rhPDGF-bB and a deproteinized bovine bone matrix: backscattered electron microscopic element analysis. Int J Periodontics Restorative Dent 27(6):539-545
  26. Kakar A, Rao BHS, Hegde S, Deshpande N, Lindner A, Nagursky H, Patney A, Mahajan H (2017) Ridge preservation using an in situ hardening biphasic calcium phosphate (${\beta}$-TCP/HA) bone graft substitute-a clinical, radiological, and histological study. Int J Implant Dent 3:25 https://doi.org/10.1186/s40729-017-0086-2
  27. Buser D, Dula K, Belser UC et al (1995) Localized ridge augmentation using guided bone regeneration. II. Surgical procedure in the mandible. Int J Periodontics Restorative Dent 15:10-29
  28. Simion M, Rocchietta I, Dellavia C (2007) Three-dimensional ridge augmentation with xenograft and recombinant human platelet-derived growth factor-BB in humans: report of two cases. Int J Periodontics Restorative Dent 27(2):109-115
  29. Nevins ML, Camelo M, Nevins M, Schupbach P, Friedland B, Camelo JM, Kim DM (2009) Minimally invasive alveolar ridge augmentation procedure (tunneling technique) using rhPDGF-BB in combination with three matrices: a case series. Int J Periodontics Restorative Dent 29(4):371-383
  30. Lee EA (2017) Subperiosteal minimally invasive Aesthetic Ridge Augmentation Technique (SMART): a new standard for bone reconstruction of the jaws. Int J Periodontics Restorative Dent 37(2):165 https://doi.org/10.11607/prd.3171

피인용 문헌

  1. Evaluation of the Bone Regeneration Effect of Recombinant Human Bone Morphogenic Protein-2 on Subperiosteal Bone Graft in the Rat Calvarial Model vol.12, pp.10, 2018, https://doi.org/10.3390/ma12101613
  2. Classification of the journal category "oral surgery" in the Scopus and the Science Citation Index Expanded: flaws and suggestions vol.45, pp.4, 2018, https://doi.org/10.5125/jkaoms.2019.45.4.186
  3. Comparison of in‐situ bone ring technique and tent‐pole technique for horizontally deficient alveolar ridge in the anterior maxilla vol.22, pp.2, 2018, https://doi.org/10.1111/cid.12887
  4. Enhanced Bone Regeneration in Variable-Type Biphasic Ceramic Phosphate Scaffolds Using rhBMP-2 vol.22, pp.21, 2018, https://doi.org/10.3390/ijms222111485