• Title/Summary/Keyword: Aluminum-26

Search Result 295, Processing Time 0.027 seconds

A Study on Stress Redistribution Mechanism for Tunneling in an Unconsolidated Ground with Inclined Layers (미고결 층상지반에서 터널굴착시 응력재분배 메커니즘에 관한 연구)

  • Park, Si Hyun;Ahn, Sang Ro
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.53-61
    • /
    • 2006
  • This study is aimed at to examine the stress redistribution mechanism for tunneling in an unconsolidated ground with inclined layers through model tests. To make the unconsolidated ground, two dimensional model ground is prepared with aluminum rods and blocks, which are frictional resistance free between testing apparatus walls and ground materials, by establishing the ground materials self-supporting. It is carried out to measure the ground deformation and the stress redistribution for model ground with tunneling by measuring apparatus respectively. For the ground deformation, surface settlements are measured to examine the deformation features during tunnel excavation. For the stress redistribution, the earth pressure acting on both the tunneling part and its surrounding parts is measured to examine their mutual relationship. Based on test results, precise examination is conducted on the stress redistribution mechanism in the unconsolidated ground with inclined layers during tunnel construction.

A Study on Tunnel Loads in an Unconsolidated Ground with Inclined Layers (지층이 경사진 미고결 층상지반에서의 터널 작용토압에 관한 연구)

  • Park, Si Hyun;Kim, Young Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.275-282
    • /
    • 2006
  • Since tunnels are linear type structures that have a long extent in comparison to their excavation or inner section, tunnels must be constructed in various ground conditions. In this study, laboratory model tests and theoretical analysis on a tunnel loads are carried out in the unconsolidated ground with inclined layers for tunnel excavation. Laboratory model tests are performed with the variation in the angle of the inclined layers and tunnel depth for the model ground with inclined layers. As for the ground materials, two dimensional model ground is prepared with aluminum rods and blocks with no cohesion, which are frictional resistance free between testing apparatus walls and ground materials, by establishing the ground materials self-supporting. Moreover tunnel load equation are newly induced so that comparisons between model test results and the theoretical results are conducted as well.

Effect of Metal Ion on the Bentonite Modified with Cationic Surfactant (양이온성 계면활성제를 이용한 유기 벤토나이트의 합성시 금속 이온의 첨가 영향)

  • Kim, Soo-Hong;Park, Jae-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.677-682
    • /
    • 2006
  • Dodecyldimethylethylammonium (DDDEA), a cationic surfactant, and aluminum metal ions were used with bentonite to synthesize to synthesize an improved organo bentonite. Among three different synthesis procedure for organo bentonites, aluminium-pillared bentonite showed the highest DDDEA sorption, which indicated that aluminium-pillared organo bentonite would exhibit the highest sorption capacity for organic contaminants. Aluminium pillared organo bentonite also showed a high sorption capability for phosphorus, while it did not exhibit strong sorption for nitrate. In the meantime, more desorption was observed with aluminium-pillared organo bentonite than ordinary organo bentonites.

Sensitivity Evaluation and Approximate Optimization Analysis for Structure Design of Module Hull Type Trimaran Pontoon Boat (모듈 선체형 삼동 폰툰 보트의 구조설계 민감도 평가와 근사 최적화 해석)

  • Bo-Youp Choi;Chang-Ryeon Son;Joon-Sik Son;Min-Ho Park;Chang-Yong Song
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1279-1288
    • /
    • 2023
  • Recently, domestic leisure boats have been actively researching eco-friendly product development to enter the global market. Since the hulls of existing leisure boats are mainly made of fiber reinforced plastic (FRP) or aluminum, design techniques for securing structural safety by applying related materials have been mainly studied. In this study, an initial structural design safety assessment of a trimaran pontoon leisure boat with a modular hull structure and eco-friendly high-density polyethylene (HDPE) material was conducted, and sensitivity evaluation and optimization analysis for lightweight design were performed. The initial structural design safety assessment was carried out by creating a finite element analysis model and applying the loading conditions specified in the ship classification regulation to check whether the specified allowable stresses are satisfied. For the sensitivity evaluation, the influence of stress and weight of each hull structural member was evaluated using the orthogonal array design of experiments method, and an approximate model based on the response surface method was generated using the results of the design of experiments. The optimization analysis set the thickness of the hull structural members as the design variable and considered the optimal design formulation to minimize the weight while satisfying the allowable stress. The algorithm of the optimization analysis applied the Gradient-population Based Optimizer (GBO) to improve the accuracy of the optimal solution convergence while reducing the numerical cost. Through this study, the optimal design of a newly developed eco-friendly trimaran pontoon leisure boat with a weight reduction of 10% was presented.

Effect of Shrinkage Defect on Fracture Impact Energy of A356 Cast Aluminum Alloy (A356 알루미늄 합금의 파단 충격에너지에 대한 수축공결함의 영향)

  • Chul, Hwang-Seong;Kwak, Si-Young
    • Journal of Korea Foundry Society
    • /
    • v.34 no.1
    • /
    • pp.22-26
    • /
    • 2014
  • Internal defects, such as shrinkage during casting, cause stress concentrations and initiate cracking. Therefore, it is important to understand the effects of internal defects on the mechanical properties including the impact behavior. This study evaluates the effects of internal casting defects on the impact performance of A356 Al-alloy castings. The internal shrinkage defects in the casting impact specimen are scanned using an industrial Computed Tomography (CT) scanner, and drop impact tests are performed with varing impact velocities on the A356 casting aluminium specimen ($10mm{\times}10mm$ section area) in order to locate the fracture energy under an impact load. The specimens with defects with a diameter less than 0.35 mm exhibit equivalent fracture impact energies of approximately 32 J and those with a 1.7 mm diameter defect reduced the fracture impact energy by 35%.

Measurement of X-ray Quality in Mammography Unit (유방촬영용 X선장치의 선질 특성)

  • Lee, In-Ja;Kim, Jung-Min;Huh, Joon
    • Journal of radiological science and technology
    • /
    • v.21 no.2
    • /
    • pp.5-10
    • /
    • 1998
  • In the mammography, X-ray beam quality is one of the most important factors. Using X-ray mammography unit model GE/CGR Senography 600T Senix H.F, Authors studied four subjects. 1. The aluminum attenuation rate in 30 kVp when used with or without compression plate. 2. HVLs at 5 different area of the X-ray field of $26{\sim}32kVp$. 3. HVLs to know the influence of corrected measurement or parallel measurement. 4. Film density with microdensitometer along and cross to the long axis of X-ray tube, in terms of the Heel effect in the X-ray field. The following results were obtained. 1. Beam quality of anode area was harder than cathode area. 2. The dose reduction rate of compression plate was approximately $65.5%{\sim}88.1%$ and the beam quality with compression plate was hardened up to 4kVp accordingly. 3. If the X-ray beam enters the attenuation plate obliquely, HVL was $2.6{\sim}2.9%$ harder than perpendicular to it. 4. Because of heel effect, the film density of cathode area is higher than anode area to film density of 0.5.

  • PDF

Synthesis and Characterization of Carbon nanofibers on Co and Cu Catalysts by Chemical Vapor Deposition

  • Park, Eun-Sil;Kim, Jong-Won;Lee, Chang-Seop
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1687-1691
    • /
    • 2014
  • This study reports on the synthesis of carbon nanofibers via chemical vapor deposition using Co and Cu as catalysts. In order to investigate the suitability of their catalytic activity for the growth of nanofibers, we prepared catalysts for the synthesis of carbon nanofibers with Cobalt nitrate and Copper nitrate, and found the optimum concentration of each respective catalyst. Then we made them react with Aluminum nitrate and Ammonium Molybdate to form precipitates. The precipitates were dried at a temperature of $110^{\circ}C$ in order to be prepared into catalyst powder. The catalyst was sparsely and thinly spread on a quartz tube boat to grow carbon nanofibers via thermal chemical vapor deposition. The characteristics of the synthesized carbon nanofibers were analyzed through SEM, EDS, XRD, Raman, XPS, and TG/DTA, and the specific surface area was measured via BET. Consequently, the characteristics of the synthesized carbon nanofibers were greatly influenced by the concentration ratio of metal catalysts. In particular, uniform carbon nanofibers of 27 nm in diameter grew when the concentration ratio of Co and Cu was 6:4 at $700^{\circ}C$ of calcination temperature; carbon nanofibers synthesized under such conditions showed the best crystallizability, compared to carbon nanofibers synthesized with metal catalysts under different concentration ratios, and revealed 1.26 high amorphicity as well as $292m^2g^{-1}$ high specific surface area.

Efficient Organic Light-emitting Diodes by Insertion a Thin Lithium Fluoride Layer with Conventional Structure

  • Kim, Young-Min;Park, Young-Wook;Choi, Jin-Hwan;Kim, Jai-Kyeong;Ju, Byeong-Kwon
    • Journal of Information Display
    • /
    • v.7 no.2
    • /
    • pp.26-30
    • /
    • 2006
  • Insertion of a thin lithium fluoride (TLF) layer between an emitting layer (EML) and an electron transporting layer has resumed in the developement of a highly efficient and bright organic light-emitting diode (OLED). Comparing with the performance of the device as a function of position with the TLF layer in tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$, we propose the optimal position for the TLF layer in the stacked structure. The fabricated OLED shows a luminance efficiency of more than 20 cd/A, a power efficiency of 12 Im/W (at 20 mA/$cm^{2}$), and a luminance of more than 22 000 cd/$m^{2}$ (at 100 mA/$cm^{2}$), respectively. We suggest that the enhanced performance of the OLED is probably attributed to the improvement of carrier balance to achieve a high level of recombination efficiency in an EML.

Characteristics of Heat Generation in time of High-speed Machining using Infrared Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • Lee, Sang-Jin;Park, Won-Kyu;Lee, Sang-Tae;Lee, Woo-Young;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.3
    • /
    • pp.26-33
    • /
    • 2003
  • The term 'High Speed Machining' has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000-100,000rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminum. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and mole Important. It not only directly influences in rate of tool weal, but also affects machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid plays a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-workpiece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF

Analysis on Occurrence of the Scum in Water Treatment Plants and Its Removal by Water Spray Method (정수장(淨水場) Scum의 발생(發生) 원인분석(原因分析)과 살수에 의한 물리적(物理的) 제거효과(除去效果))

  • Yoon, Jae Heung;Choi, Gye Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.26-33
    • /
    • 1994
  • To slove the problems by the scum, which causes operational and water quality problems in water treatment plants, several researches were conducted based on the site investigations on twelve large water treatment plants, biological and chemical analysis of scum, analyzing raw water quality data. Two types of scum, which are from scum and floe scum, can be classified based on the analysis and site investigations. The major parameter generating floe scum was indicated as fine bubbles dissolved in the water. The fine bubbles dissolved in the water can be generated by over-saturated air in the water, adding aluminum surface as the coagulant, conducting the break point pre-chlorination and so on. The water spray method, which is one of the physical treatment methods for removing scum, was selected for conducting experiments on the removal efficiency in the flocculation basin of the real water treatment plant. The water spray method was successfully applied for removing scum with the advantages of using spiral nozzles in case of using the raw water rather than the cleaned water.

  • PDF