Browse > Article

Efficient Organic Light-emitting Diodes by Insertion a Thin Lithium Fluoride Layer with Conventional Structure  

Kim, Young-Min (Display and Nanosystem Laboratory, The College of Engineering, Korea University, The Opto-Electronic Materials Research Center, Korea Institute of Science and Technology)
Park, Young-Wook (Display and Nanosystem Laboratory, The College of Engineering, Korea University)
Choi, Jin-Hwan (Display and Nanosystem Laboratory, The College of Engineering, Korea University)
Kim, Jai-Kyeong (The Opto-Electronic Materials Research Center, Korea Institute of Science and Technology)
Ju, Byeong-Kwon (Display and Nanosystem Laboratory, The College of Engineering, Korea University)
Publication Information
Abstract
Insertion of a thin lithium fluoride (TLF) layer between an emitting layer (EML) and an electron transporting layer has resumed in the developement of a highly efficient and bright organic light-emitting diode (OLED). Comparing with the performance of the device as a function of position with the TLF layer in tris-(8-hydroxyquinoline) aluminum $(Alq_{3})$, we propose the optimal position for the TLF layer in the stacked structure. The fabricated OLED shows a luminance efficiency of more than 20 cd/A, a power efficiency of 12 Im/W (at 20 mA/$cm^{2}$), and a luminance of more than 22 000 cd/$m^{2}$ (at 100 mA/$cm^{2}$), respectively. We suggest that the enhanced performance of the OLED is probably attributed to the improvement of carrier balance to achieve a high level of recombination efficiency in an EML.
Keywords
Organic light-emitting diodes (OLEDs); Carrier injection; Thin Lithium Fluoride (TLF) Layer; recombination efficiency;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. S. Hung, C. W. Tang, M. G. Mason, P. Raychaudhuri, and J. Madathil, Appl. Phys. Lett. 78, 544 (2001)   DOI   ScienceOn
2 J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, Science 273, 884 (1996)   DOI   ScienceOn
3 P. Peumans, V Bulovi6, and S. R. Forrest, Appl. Phys. Lett. 76, 2650 (2000)   DOI   ScienceOn
4 T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, Appl. Phys. Lett. 73, 2763 (1998)   DOI   ScienceOn
5 N. Tessler, Adv. Mater. 5, 363 (1999)
6 J. Kido and T. Matsumoto, Appl. Phys. Lett. 73, 2866 (1998)   DOI
7 X. Zhou, J. He, L. S. Liao, M. Lu, X. M. Ding, X. Y. Hou, X. M. Zhang, X. Q. He, and S. T. Lee, Adv. Mater. 4, 265 (2000)
8 L. S. Hung, C. W. Tang, and M. G. Mason, Appl. Phys. Lett. 70, 152 (1997)   DOI   ScienceOn
9 C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987)   DOI
10 G. Parthasarathy, C. Shen, A. Kahn, and S. R. Forrest, J. Appl. Phys. 89, 4986 (2001)   DOI   ScienceOn
11 R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sinclair, V S. Valencia, and P. A. Cahill, Appl. Phys. Lett. 66, 3618 (1995)   DOI   ScienceOn
12 J. Lee, Y. Park, S. K. Lee, E.-J. Cho, D. Y. Kim, H. Y. Chu, H. Lee, L..M. Do, and T. Zyung, Appl. Phys. Lett. 80, 3123 (2002)   DOI   ScienceOn
13 G. G. MaIliaras and J. C. Scott, J. Appl. Phys. 83, 5399 (1998)   DOI   ScienceOn
14 M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999)   DOI   ScienceOn
15 V.-E. Choong, Y. Park, N. Shivaparan, C. W. Tang, and Y. Gao, Appl. Phys. Lett. 71, 1005 (1997)   DOI   ScienceOn
16 M. Matsumura, K. Furukawa, and Y. Jinde, Thin Solid Films. 331, 96 (1998)   DOI
17 C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys. 65, 3610 (1989)   DOI
18 L. S. Liao, K. P. Klubek, and C. W. Tang, Appl. Phys. Lett. 84, 167 (2004)   DOI   ScienceOn
19 C. Jiang, W. Yang, J. Peng, S. Xiao, and Y. Cao, Adv. Mater. 6, 537 (2004)
20 K. Ihm, T.-H. Kang, K.-J. Kim, C.-C. Hwang, Y.-J. Park, K.-B. Lee, B. Kim, C.-H. Jeon, C.-Y. Park, K. Kim, and Y.-H. Tak, Appl. Phys. Lett. 83, 2949 (2003)   DOI   ScienceOn