• 제목/요약/키워드: Aluminum tube

검색결과 244건 처리시간 0.031초

Assessment of radiopacity of restorative composite resins with various target distances and exposure times and a modified aluminum step wedge

  • Mir, Arash Poorsattar Bejeh;Mir, Morvarid Poorsattar Bejeh
    • Imaging Science in Dentistry
    • /
    • 제42권3호
    • /
    • pp.163-167
    • /
    • 2012
  • Purpose: ANSI/ADA has established standards for adequate radiopacity. This study was aimed to assess the changes in radiopacity of composite resins according to various tube-target distances and exposure times. Materials and Methods: Five 1-mm thick samples of Filtek P60 and Clearfil composite resins were prepared and exposed with six tube-target distance/exposure time setups (i.e., 40 cm, 0.2 seconds; 30 cm, 0.2 seconds; 30 cm, 0.16 seconds, 30 cm, 0.12 seconds; 15 cm, 0.2 seconds; 15 cm, 0.12 seconds) performing at 70 kVp and 7 mA along with a 12-step aluminum stepwedge (1 mm incremental steps) using a PSP digital sensor. Thereafter, the radiopacities measured with Digora for Windows software 2.5 were converted to absorbencies (i.e., A=-log (1-G/255)), where A is the absorbency and G is the measured gray scale). Furthermore, the linear regression model of aluminum thickness and absorbency was developed and used to convert the radiopacity of dental materials to the equivalent aluminum thickness. In addition, all calculations were compared with those obtained from a modified 3-step stepwedge (i.e., using data for the 2nd, 5th, and 8th steps). Results: The radiopacities of the composite resins differed significantly with various setups (p<0.001) and between the materials (p<0.001). The best predicted model was obtained for the 30 cm 0.2 seconds setup ($R^2$=0.999). Data from the reduced modified stepwedge was remarkable and comparable with the 12-step stepwedge. Conclusion: Within the limits of the present study, our findings support that various setups might influence the radiopacity of dental materials on digital radiographs.

알루미늄 연속주조 용탕의 탈 가스 일체화 장치 개발 (An Implementation of an Integrated Degasing System for Aluminum Molten Metal in Continuous Casting)

  • 이용중
    • 한국공작기계학회논문집
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2008
  • There are some methods that have been used to manage a degasing process in recent years, such as an injection method that uses aluminum molten metal powder and chemicals supplier and input method that supplies argon and nitrogen, or chlorine gas by using a gas blow-tube. However, these methods show some problems, and it shows that it is a difficult process to handle, pollution due to producing a lot of toxic gases like chlorine and fluoride gas, irregular effects, and lowering work efficiency due to the excessive processing time. The problems that are the most fatal are the producing a lot of sludge due to the reaction of aluminum molten metal with chemicals, loss of metals, and decreasing the life of refractory materials. In order to solve these problems, this paper develops a technology that is related to aluminum continuous casting molten metal and monolithic degasing apparatus. A degasing apparatus developed in this study improved the existing methods and prevented environmental pollution with smokeless, odorless, and harmlessness by using a new method that applies argon and nitrogen gas in which the methods used in the West and Japan are eliminated. The method developed in this study decreases the molten metal processing and settling time compared to the existing methods and improves the workers' health, safety, and environment because there is no pollution in processes.

아연 코팅과 열처리에 따른 알루미늄 열교환기 소재의 부식 (Effects of Zn Coating and Heat Treatment on the Corrosion of Aluminum Heat Exchanger Tubes)

  • 조수연;김재중;장희진
    • Corrosion Science and Technology
    • /
    • 제18권1호
    • /
    • pp.24-32
    • /
    • 2019
  • The effects of zinc coating and heat treatment on the corrosion resistance of aluminum alloys including A1100 and the modified A3003, used as heat exchanger tube were investigated in this study. The grain size of the heat-treated specimen is larger than that of the specimen without heat treatment, but the grain size did not significantly affect the corrosion behavior. The concentration of zinc was noted at 11.3 ~ 31.4 at.% for the as-received Zn-coated samples and reduced to 1.2 ~ 2.4 at.% after the heat treatment, as measured by the scanning electron microscopy (SEM) with an energy dispersive spectrometer (EDS) on the surface. The concentration of oxygen is 22 ~ 46 at.% for the zinc coated specimens while noted at 7.4 ~ 12.8 at.% for the specimens after the removal of the coating. The corrosion behavior depended largely on the concentrations of zinc, aluminum, and oxygen on the specimen surface, but not on the Mo content. The corrosion potential was high and the corrosion rate was low for a specimen with a low zinc content, a high aluminum content, and a high oxygen content.

초폭굉속도 램가속기의 정상발진과 불발과정에 대한 수치해석 (Numerical Study of Normal Start and Unstart Processes In a Superdetonative Speed Ram Accelerator)

  • 문귀원;정인석;최정렬
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.123-132
    • /
    • 2002
  • A numerical study was conducted to investigate the combustion phenomena of normal start and unstart processes based on ISL's RAMAC 30 experiments with different diluent amounts and fill pressures in a ram accelerator. The initial projectile launching speed was 1.8 km/s which corresponded to the superdetonative speed of the stoichiometric $H_2/O_2$ mixture diluted with 5 $CO_2$ or 4 $CO_2$. Experiments with same condition except for projectile surface material demonstrated that ignition was successful with an aluminum projectile, but no combustion was observed in case of a steel projectile. In this study, it was found that neither shock nor viscous heating was sufficient to ignite the mixture at a low speed of 1.8 km/s, as was found in the experiments using a steel projectile. However, we could succeed in igniting the mixtures by imposing a minimal amount of additional heat to the combustor section and simulate the normal start and unstart processes found in the experiments with an aluminum projectile. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations coupled with a Baldwin-Lomax turbulence model and detailed chemistry reaction equations of $H_2/O_2/CO_2$ suitable for high-pressure gaseous combustion were considered. The governing equations were discretized by a high order accurate upwind scheme and solved in a fully coupled manner with a fully implicit, time accurate integration method. The numerical results matched almost exactly to the experimental results. As a result, it was found that the normal start and unstart processes depended on the strength of gas mixture, development of shock-induced combustion wave stabilized by the first separation bubble, and its size and location.

  • PDF

핀관 열교환기에서 확관율이 접촉열전달계수에 미치는 영향 (Effect of Expansion Ratio on Contact Heat Transfer Coefficient in Fin-Tube Heat Exchanger)

  • 이상무;박병덕
    • 설비공학논문집
    • /
    • 제24권1호
    • /
    • pp.45-50
    • /
    • 2012
  • The plate fin and tube type of heat exchanger is widely used in air conditioner, and the heat exchanger is assembled by the mechanical expansion of copper tubes and fastening the aluminum fin. The objective of the present study is to investigate how the mechanical expansion of copper tube affects on the heat transfer performance of a plate fin and tube type heat exchanger. This study has been performed by experimental and numerical methods. The numerical and experimental results show that the tube expansion ratio has a influence on the heat transfer performance. Within the tested expansion ratio, the contact pressure shows the peak value and it decreases as the expansion ratio increases. Air-side heat transfer coefficient increases until the expansion ratio reaches 1.23, and then decreases with the similar pattern to the contact pressure. Also, contact heat transfer coefficient shows the maximum when the contact pressure is highest as well as the air-side heat transfer coefficient.

레이저용접에 의한 알루미늄 박판구조물의 용접변형 해석 (Analysis of Welding Distortion for Laser Welded Sheet Metal Structures of Aluminum Alloy)

  • 권기보;김재웅;김철희
    • Journal of Welding and Joining
    • /
    • 제27권3호
    • /
    • pp.44-51
    • /
    • 2009
  • In this study, welding distortion analysis is performed for various design of tube shape structures which are assembled with aluminum sheet metal. Aluminum 5052 plates of 1mm thickness are used to analyze. An efficient keyhole model, as a welding heat source, is used for the prediction of full penetration weld size and shape which is required for the thermal analysis. The thermal and mechanical material properties are considered as temperature dependent functions, due to the high temperature variations during the welding. The numerical model is calculated by using a commercial software and evaluated with the experiments. The calculation results could make a comparative study in the view of distortion for the various size and shape of structure.

다공성 알루미늄 합금이 충진된 스테인레스 강 원통 Shell의 제조 및 굽힘거동 (Manufacture and Bending Behavior of Stainless Steel Cylindrical Shell Filled with Aluminum Alloy Foam)

  • 김엄기;이효진;조성석
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.19-24
    • /
    • 2003
  • Potential applications of foam-filled section are the automotive structures. A foam-filled section can be used for the front rail and firewall structures to absorb impact energy during frontal or side collision. In the case of side collision where bending is involved in the crushing mechanics, the foam filler will be significant in maintaining progressive crushing of the thin-walled structures so that more impact energy can be absorbed. In this study, the manufacturing process of closed cell aluminum alloy foam filled stainless steel tube was studied, and the various foam filled specimens including piecewise fillers were prepared, tested and discussed about the bending behaviors.

  • PDF

접합실 바닥형상이 컨덴서 튜브 직접압출 공정 및 금형탄성변형에 미치는 영향 (The Effect of Chamber Bottom Shape on Die Elastic Deformation and Process in Condenser Tube Extrusion)

  • 이정민;김병민;정영득;조훈;조형호
    • 한국정밀공학회지
    • /
    • 제20권5호
    • /
    • pp.66-72
    • /
    • 2003
  • In case of hollow cylinder extrusion using porthole die, the effects of extrusion parameters-temperature, the speed of extrusion, the shape of the die and mandrel-on metal flow in porthole die extrusion of aluminum have been investigated. However, there have been few studies about condenser tube extruded by porthole die. Original metal flow of condenser tube by porthole die extrusion is similar to hollow cylinder extrusion but the estimation of metal flow for extrusion parameters is different. For example, variation of chamber length in hollow extrusion only affects the welding pressure, however, the welding chamber length in condenser tube extrusion influences to the welding pressure as well as the deflection of mandrel. This study was designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection according to angular variation in the bottom of chamber in porthole die. Estimation was carried out using finite element method in as non-steady state. Analytical results can provide useful information the optimal design of porthole die.

핀칼라와 튜브의 간극에 따른 열교환기의 열전달 특성 (Heat Transfer Characteristic of Finned-tube Heat Exchangers with Different Clearance between Fin Collar and Tube Surface)

  • 박영민;정영만;이재근;박내현
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2009년도 하계학술발표대회 논문집
    • /
    • pp.1073-1078
    • /
    • 2009
  • Finned-tube heat exchangers are often made with aluminum fins and copper tubes. Usually the contact between fin collar and tube surface for finned tube heat exchanger is secured by mechanical expansion of the tubes. The objective of the present study is to apprehend how much effect clearance has on the performance of heat exchanger. This effect is studied using an experimental approach. The thermal fluid measurements are made using a psychometric calorimeter. Frontal air velocity varies in the range from 1.0m/s to 3.0 m/s. The heat transfer rate of sample which has bigger clearance is only 27% compare with the other's in dry condition. In wet condition, its heat transfer rate is 78% compare with the other's.

  • PDF