• Title/Summary/Keyword: Aluminum package

Search Result 44, Processing Time 0.021 seconds

Studies on Storage Characteristics of Perilla Perfrutescens var. Acuta, Mentha Arvensis L. var. Piperascens Malinvaud According to Packaging Method (포장방법별 소엽, 박하의 저장성 연구)

  • Kim, Soo-Min;Kim, Eun-Ju
    • The Korea Journal of Herbology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2009
  • Objectives : The purpose of this study is to investigate on storage characteristics of flavouring oriental medicine materials according to Packaging method(Aluminum package, PP). Methods : This experiments were carried out by field survey and storage characteristics were carried out by physicochemical determination. Results : Flavouring oriental medicine materials were used to in aluminum package to keep original flavour in Japan and Chinese by field and study survey. In view of this survey results, it is very desirable to use zipper Aluminum package in flavouring oriental medicine materials(Perilla perfrutescens var. acuta, Mentha arvensis L. var. piperascens malinvaud). Conclusions : This study results revealed that Aluminum package were superior to any other package method on the basis of keeping original flavour and to reduce microbial contamination in oriental medicine materials.

ED COB Package Using Aluminum Anodization (알루미늄 양극산화를 사용한 LED COB 패키지)

  • Kim, Moonjung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.10
    • /
    • pp.4757-4761
    • /
    • 2012
  • LED chip on board(COB) package has been fabricated using aluminum substrate and aluminum anodization process. An alumina layer, used as a dielectric in COB substrate, is produced on aluminum substrate by selective anodization process. Also, selective anodization process makes it possible to construct a thermal via with a fully-filled via hole. Two types of the COB package are fabricated in order to analyze the effects of their substrate types on thermal resistivity and luminous efficiency. The aluminum substrate with the thermal via shows more improved measurement results compared with the alumina substrate. These results demonstrate that selective anodization process and thermal via can increase heat dissipation of COB package in this work. In addition, it is proved experimentally that these parameters also can be enhanced using efficient layout of multiple chip in the COB package.

DRAM Package Substrate Using Aluminum Anodization (알루미늄 양극산화를 사용한 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.69-74
    • /
    • 2010
  • A new package substrate for dynamic random access memory(DRAM) devices has been developed using selective aluminum anodization. Unlike the conventional substrate structure commonly made by laminating epoxy-based core and copper clad, this substrate consists of bottom aluminum, middle anodic aluminum oxide and top copper. Anodization process on the aluminum substrate provides thick aluminum oxide used as a dielectric layer in the package substrate. Placing copper traces on the anodic aluminum oxide layer, the resulting two-layer metal structure is completed in the package substrate. Selective anodization process makes it possible to construct a fully filled via structure. Also, putting vias directly in the bonding pads and the ball pads in the substrate design, via in pad structure is applied in this work. These arrangement of via in pad and two-layer metal structure make routing easier and thus provide more design flexibility. In a substrate design, all signal lines are routed based on the transmission line scheme of finite-width coplanar waveguide or microstrip with a characteristic impedance of about $50{\Omega}$ for better signal transmission. The property and performance of anodic alumina based package substrate such as layer structure, design method, fabrication process and measurement characteristics are investigated in detail.

Anodic Alumina Based DRAM Package Substrate (양극산화 알루미나 기반의 DRAM 패키지 기판)

  • Kim, Moon-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.3
    • /
    • pp.853-858
    • /
    • 2010
  • DRAM package substrate has been demonstrated using a thick alumina layer produced by aluminum anodization process. To apply a transmission-based design methodology, 2 dimensional electromagnetic simulation is performed. The design parameters including signal line width/spacing and alumina's thickness are optimized based on the simulation analysis and are verified with the fabrication and the measurement of the test patterns on the anodic alumina substrate. DDR2 DRAM package is chosen as a design vehicle. Aluminum anodization technique has been applied successfully to fabricate new DRAM package substrate.

A Study on the Effects of Package and PCB Materials on Thermal Characteristics of PDIP (패키지 및 PCB 재료가 PDIP 열특성에 미치는 영향에 관한 연구)

  • 정일용;이규봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.3
    • /
    • pp.729-737
    • /
    • 1994
  • A three-dimensional finite element model of a 20-pin plastic dual-in-line package(PDIP) plugged into a PCE has been developed by using the finite element code ANSYS. The model has been used for thermal characterization of the package during its normal operation under natural convection cooling. Temperature distributions in the package and PCB are obtained from numerical analysis and compared with experimentally measured data. Various cases are assumed and analyzed to study the effects of package and PCB materials on thermal characteristics of PDIP with and without aluminum heatspreader. Thermal dissipation capability of PDIP is greatly increased due to copper die pad/lead frame and heatspreader. However, thermally induced stresses in the package and fatigue life of chip are improved for PDIP with Alloy 42 die pad/lead frame and no heatspreader. It is also found that the role of PCB on thermal characteristics of PDIP is very imporatant.

Low Temperature Co-firing of Camber-free Ceramic-metal Based LED Array Package (세라믹-금속 기반 LED 어레이 패키지의 저온동시소성시 휨발생 억제 연구)

  • Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.35-41
    • /
    • 2016
  • Ceramic-metal based high power LED array package was developed via thick film LTCC technology using a glass-ceramic insulation layer and a silver conductor patterns directly printed on the aluminum heat sink substrate. The thermal resistance measurement using thermal transient tester revealed that ceramic-metal base LED package exhibited a superior heat dissipation property to compare with the previously known packaging method such as FR-4 based MCPCB. A prototype LED package sub-module with 50 watts power rating was fabricated using a ceramic-metal base chip-on-a board technology with minimized camber deformation during heat treatment by using partially covered glass-ceramic insulation layer design onto the aluminum heat spread substrate. This modified circuit design resulted in a camber-free packaging substrate and an enhanced heat transfer property compared with conventional MCPCB package. In addition, the partially covered design provided a material cost reduction compared with the fully covered one.

Characterization and Enhancement of Package O2 Barrier against Oxidative Deterioration of Powdered Infant Formula

  • Jo, Min Gyeong;An, Duck Soon;Lee, Dong Sun
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.24 no.1
    • /
    • pp.13-16
    • /
    • 2018
  • Powdered infant formula is susceptible to oxidation in the presence of oxygen. Even though the product is usually packaged in nitrogen atmosphere, the oxygen ingress through the package layer may occur in case of flexible pouches and affects the oxidation of the product. $O_2$ barrier of the package is thus important variable to protect the product from oxidative deterioration. $O_2$ barrier property was investigated for aluminum-laminated small pillow packs of $3.5{\times}17.5cm$. Storage temperature and combination of primary and secondary packages were evaluated as variables affecting the barrier for conditions of empty pouch flushed with nitrogen. Apparent oxygen transmission rate of the primary package exposed to air was $2.32{\times}10^{-3}mL\;(STP)\;atm^{-1}\;d^{-1}$ at $30^{\circ}C$ and its temperature dependence could be explained by activation energy of $28.5kJ\;mol^{-1}$ in Arrhenius relationship. The additional secondary package of nylon/PE film containing 20 primary packages was ineffective in modulating package $O_2$ transmission and was only marginally helpful when combined with oxygen scavenger. The same was true in suppressing the product oxidation when the primary package was filled with 14 g of the formula.

Extrusion Process Analysis of Al/Cu Clad Composite Materials by Finite Element Method (유한요소법을 이용한 Al/Cu 층상복합재료의 압출공정해석)

  • 김정인;강충길;권혁천
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.87-97
    • /
    • 1999
  • A clad material is a different type of the typical composites which are composed of two or more matericals joined at their interface surface. The advantge of cald material is that the combination of different materials can satisfy both the need of good mechanical properties and the other demand of user such as electrical properties instantaneously. This paper is concerned with the direct and indirect extrusion processes of copper-clad aluminum rod. Extrusion of copper-clad aluminum rod was simulated using a commercially available finite element package of DEFORM. The simulations were performed for copperclad aluminum rod to predict the distributions of temperature, effective stress, effective strain rate and mean stress for sheath thicknesses, die exit diameters and die temperatures.

  • PDF

A Study on Forming of Al-Zn-Mg-Sc Aluminum Alloy Bolts (Al-Zn-Mg-Sc 알루미늄 합금 볼트 성형에 관한 연구)

  • Yoon, D.J.;Hahm, S.Y.;Lee, Y.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.7
    • /
    • pp.447-452
    • /
    • 2012
  • This paper is concerned with forming of Al-Zn-Mg-Sc aluminum alloy bolts, focusing on the effects of heat treatment and age-hardening on the formability and ductile damage evolution. Both experimental and finite element studies were performed. From the experiments, it is observed that the heat treatment or the normalization of Al-Zn-Mg-Sc aluminum alloy increases its formability dramatically resulting in successful bolt forming, while the effects of age-hardening at room temperature on the stress-strain relationship and formability are not very critical. Deformation characteristics such as distribution of effective stress and strain, material flow, and ductile damage evolution during bolt forming are examined using a commercial finite element package, Deform-2D. It should be noted that the extrusion load predicted by the finite element method matches well the experiment results. The finite element predictions on the deformation characteristics support the experimental observations such as fracture of bolt head flange, material flow, and distribution of hardness.

Investigation of Pre-packed Herbal Medicine in Korean University Oriental Medicine Hospital and their Usefulness (국내 대학부속 한방병원 한약 포장팩의 사용 현황 및 효용성 연구)

  • Jeong, A Ram;Lee, Hye Yoon;Cheon, Jin Hong;Kim, Ki Bong
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.27 no.1
    • /
    • pp.50-58
    • /
    • 2013
  • Objectives The purpose of this study is to know the present uses of pre-packed herbal medicine and their usefulness in Korean University Oriental Medicine Hospitals. Methods We selected 29 university hospitals to survey by using telephone and by mail. Results 1. The kind of packages that 29 hospitals uses were 2 layers, 3 layers and 3 layers with aluminum as the component layer, standing or non-standing pouch. 2. Total 24.1% hospitals are using 3 layers patch with aluminum because of their merits. The merits are preserving the quality of packaged drugs, blocking sun lights and beautiful looking, gas barrier properties and an opening convenience. 3. However, the 3 layers with aluminum packages were little bit more expensive and it can't be used in the microwaves. Conclusions This study revealed that 3 layers with aluminum packages were superior to any other packages because it can keep original flavor and properties, block sun light, and an easy opening convenience. Thus, aluminum contained 3 layer packages are better to preserve herbal medicines.