• Title/Summary/Keyword: Aluminum brazing

Search Result 26, Processing Time 0.025 seconds

EFFECT OF INTERMETALLIC COMPOUND ON MECHANICAL PROPERTIES OF Al-Cu DISSIMILAR BRAZING JOINT

  • Koyama, Ken;Shinozaki, Kenji;Ikeda, Kenji;Kuroki, Hidenori
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.555-560
    • /
    • 2002
  • Brazing of Al to Cu using AI-Si-Mg-Bi brazing alloy has been carried out in the vacuum furnace. In the bonded interlayer, there were two kinds of intermetallic compounds. One of these intermetallic compounds was e phase and the other was b phase. The growth of b phase was controlled by diffusion Al into Cu. Deformation behavior of Al-Cu brazing joint was brittle without deformation of the base metal. Shear strength of the joint was only about 20MPa. The shear specimen broken in the intermetallic compound, which was mainly e phase. Shear strength did not depend on the bonding temperature.

  • PDF

Development of Flux for Aluminium Brazing (알루미늄 경납땜용 용제의 개발)

  • 강성개;이봉원;이철구
    • Journal of Welding and Joining
    • /
    • v.11 no.2
    • /
    • pp.13-20
    • /
    • 1993
  • The object of the research is to develop the flux for aluminum brazing. Five kinds of flux were applied to brazing joint with fin and tube structure using same filler metal. To estimate the performance of the developed flux, products analysis, differential thermal test, grain size test, observation of crystalline structure, tensile test, corrosion test were made. From the results of experiment, the following conculsions were obtained. 1. The optimum composition ratio (Wt) of AlF$_3$ and KF was 50-60% : 40-50% 2. The optimum melting point of the flux was 567-578$^{\circ}C$.

  • PDF

Effect of Tin Addition on the Melting Temperatures and Mechanical Properties of Al-Si-Cu Brazing Filler Metals (저온 브레이징용 Al-Si-Cu 합금의 Sn 첨가에 따른 융점 및 기계적 특성 변화 연구)

  • Kim, Min Sang;Park, Chun Woong;Byun, Jong Min;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.376-381
    • /
    • 2016
  • For the development of a low-melting point filler metal for brazing aluminum alloy, we analyzed change of melting point and wettability with addition of Sn into Al-20Cu-10Si filler metal. DSC results showed that the addition of 5 wt% Sn into the Al-20Cu-10Si filler metal caused its liquidus temperature to decrease by about 30 oC. In the wettability test, spread area of melted Al-Cu-Si-Sn alloy is increased through the addition of Sn from 1 to 5 wt%. For the measuring of the mechanical properties of the joint region, Al 3003 plate is brazed by Al-20Cu-10Si-5Sn filler metal and the mechanical property is measured by tensile test. The results showed that the tensile strength of the joint region is higher than the tensile strength of Al 3003. Thus, failure occurred in the Al 3003 plate.

The Performance Characteristics of the Open Celled Aluminum Foam Applied for Heat Dissipation (다공성 알루미늄 방열핀의 성능특성 연구)

  • Kim, Jong-Soo;Lee, Hyo-Jin
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.91-98
    • /
    • 2003
  • Experimental study for a porous aluminum heat dissipator/or heat sink made by casting method is conducted to evaluate the performance of the porous aluminum heat sinks. The parameters applied for the present study are the manufacturing method. various bonding materials for the bottom plate of heat sink, and their different material, pore size, etc.. The casting method for porous aluminum heat sink is suggested for the best performance of heat dissipation in this experiment. The bottom plate applied by melting aluminum is introduced and proved their excellent characteristics compared with brazing, soldering, and bonding methods. In the present experiment, aluminum with different conductivities, such as AC8A and pure aluminum, are tested and the pure aluminums with the higher conductivity than AC8A shows their improvement of the performance. And the proper dimensions related to the pore size and the height of porous aluminum heat sinks are proposed in the present study.

Aluminum alloys and their joining methods (알루미늄 합금과 그 접합 방법)

  • Jung, Do-hyun;Jung, Jae Pil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.2
    • /
    • pp.9-17
    • /
    • 2018
  • Aluminum (Al) and its alloys have been used widely in a variety of industries such as structural, electronic, aerospace, and particularly automotive industries due to their lightweight characteristic, outstanding ductility, formability, high oxidation and corrosion resistance, and high thermal and electrical conductivity. Al have different kinds of alloys according to the various additional elements system and they should be selected properly depending on their effectiveness and suitability for their particular purpose. The major elements for Al alloys are silicon (Si), magnesium (Mg), manganese (Mn), copper (Cu), and zinc (Zn). In order for Al alloys to use for each industry, it is necessary to study of Al to Al joining and/or the Al to dissimilar materials joining to combine the individual parts into one. Many studies on joining technologies about Al to Al and Al to dissimilar materials have been performed such as press joining, bolted joint, welding, soldering, riveting, adhesive bonding, and brazing. This study reviews a variety of Al alloys and their joining method including its principles and properties with recent trends.

Effect of Microstructure Control on the Tensile and Erosion Properties of 3527/4343 Aluminum Clad (3527/4343 알루미늄 클래드재의 인장 및 침식특성에 미치는 미세조직 제어의 영향)

  • Euh, K.;Kim, S.H.;Kim, H.W.;Kim, D.B.;Oh, Y.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.5
    • /
    • pp.264-268
    • /
    • 2013
  • Aluminum clad sheets for brazing materials in the automotive heat exchangers are required to exhibit both high strength and excellent erosion resistance. In this study, the effects of microstructural changes on the property of clad sheets due to thermomechanical treatment were investigated. The clad sheets were fabricated by roll bonding of twin-roll-cast AA3527 and AA4343 alloys followed by cold rolling down to a thickness of 0.22mm. Partial or full annealing was conducted at the final thickness in order to improved the erosion resistance while keeping the proper strength. Since full annealing was achieved for a temperature of $400^{\circ}C$, annealing treatments were performed at 360, 380, and $400^{\circ}C$, respectively. The tensile strength of 3527/4343 clad material was found to be inversely proportional to the annealing temperature before the brazing heat treatment. After this latter treatment, however, the tensile strength of the clad material was about 195~200MPa regardless of the annealing temperature. The erosion depth ratio of the clad annealed at $400^{\circ}C$ was 8.8% (the lowest), while that of the clad annealed at $380^{\circ}C$ was 17% (the highest). The effect of annealing temperature on the tensile and erosion properties of 3527/4343 aluminum clad sheets was elucidated by means of microstructural analyses.

Friction Welding of Dissimilar Press Punch Materials and Its Evaluation by AE (신소재 금형펀치의 이종재 마찰용접 개발과 AE품질평가를 위한 연구)

  • 오세규;박일동;이원석
    • Journal of Welding and Joining
    • /
    • v.15 no.2
    • /
    • pp.43-53
    • /
    • 1997
  • The complete joining method for dissimilar press punch materials and its real-time evaluation method is not available at present. Brazing method has been used for joining them, but it is known that the welded joint by the brazing has the lower bonding efficiency and reliability than the diffusion welding. The friction welding with a diffusion mechanism in bonding was applied in this study. This work was carried out to determine the proper friction welding conditions and to analyze mechanical properties of friction welded joints of sintered carbide tool materials (SKNM50 for the blade part of press punch) to alloy steel (SCM440 for the shank part of press punch) using aluminum (A6061 for the interlayer material) as an insert material between the sintered carbide tool materials and the alloy steel. In addition, acoustic emission test was carried out during friction welding to evaluate the weld quality.

  • PDF

Effect of cold rolling condition on sagging properties of Al 4343/3N03/4343 three-layer clad materials (Al 4343/3N03/4343 합금 3층 clad 재의 sagging 특성에 미치는 냉간압연조건의 영향)

  • 김목순
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.157-160
    • /
    • 1999
  • Aluminum 4343(filler thickness ; 10${\mu}{\textrm}{m}$/Al 3N03(core 80${\mu}{\textrm}{m}$)/Al 4343(filler 10${\mu}{\textrm}{m}$) clad sheet which is recently developed as brazing sheet materials for automotive condensers was fabricated by castinglongrightarrowhot rollinglongrightarrowcold rollinglongrightarrowintermediate annealing(IA)longrightarrowfinal cold rolling(CR). and the effect of IA/CR conditions on microstructure and sagging resistance were investigated the sheet which were fabricated by optimum conditions (IA'ed at 42$0^{\circ}C$ followed by CR'ed to 20~45%) showed good sagging resistance because the core obtained a coarsely recrystallized grain structure during brazing and consequently inhibited filled alloy penetration into the core.

  • PDF

Study on Brazing of Large-capacity Aluminum Heat Sinks (대용량 알루미늄 브레이징에 관한 연구)

  • Lee, Young-Lim;Hwang, Soon-Ho
    • Proceedings of the KAIS Fall Conference
    • /
    • 2009.05a
    • /
    • pp.36-39
    • /
    • 2009
  • 최근들어 고전력 및 고성능 전자제품 시장이 확장됨에 따라 대용량 알루미늄 히트싱크의 수요가 급증하고 있다. 이를 위해 고효율의 브레이징 히트싱크가 선호되고 있지만, 기존의 대기 연속로에서는 불충분한 가열과 모재 금속의 서로 다른 두께 때문에 생산이 사실상 불가능하다. 따라서, 본 연구에서는 브레이징 히트싱크 개발을 위하여 새로운 인덱스 배치로 및 브레이징 공정을 최적화하였다. 또한, 브레이징 용착효율과 인장응력 실험도 개발된 브레이징 히트싱크에 대해 이루어졌다.

  • PDF