• 제목/요약/키워드: Aluminum Sheets

검색결과 223건 처리시간 0.022초

차체용 알루미늄합금 판재의 스프링백 특성과 브래킷 성형성 향상에 관한 연구 (A Study on the Springback Characteristics and Bracket Formabilities Enhancement of Aluminum Alloy Sheets for Autobody Application)

  • 최문일;강성수
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.64-76
    • /
    • 1997
  • This paper deals with development of brackets by using aluminum alloy sheets which is indispensable for weight reduction of autobody. The press formability of aluminum alloy sheet is estimated by means of tensile test, V bending test, sample manufacturing test and photograph of microstructure. The results show that the elongation, strength, work hardening exponent, plastic anisotropy coefficient of Al 6***series are better than those of Al 5***series, but for general press formability, Al 5***series are better than Al 6***series due to lower yield strength. Since most of mechanical properties of aluminum sheet are generally inferior to those of cold-rolled steel sheet, shape fixability and press formability of aluminum sheet are very poor. For making components of autobody by use of die for steel sheet application, it is essential that die should be nodified for least bending and stretching. With the modified die for aluminum, it could be possible to make brackets, the component of autobody. Microstructure of Al 5***series has fine grain and small the 2nd phase and that of Al 6***series has relatively coarse grain. Therefore, it seems that fine grain and small the 2nd phase of Al 5***series is one of the factor of lower yield strength, resistance to stamping work, formation of Luder's line.

  • PDF

알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석) (Development of Finite Element Program for Analyzing Springback Phenomena of Non-Isothermal Forming Processes for Aluminum Alloy Sheets (Part2 : Theory & Analysis))

  • 금영탁;한병엽
    • 소성∙가공
    • /
    • 제12권8호
    • /
    • pp.710-717
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures for the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

알루미늄 합금박판 비등온 성형공정 스프링백 해석용 유한요소 프로그램 개발 (2부 : 이론 및 해석) (Development of Finite Element Program for Analyzing Springback Phenomena of Non-isothermal Forming Processes for Aluminum Alloy Sheets (Part II : Theory & Analysis))

  • 금영탁;한병엽
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 제4회 박판성형 심포지엄
    • /
    • pp.13-20
    • /
    • 2003
  • The implicit, finite element analysis program for analyzing the springback in the warm forming process of aluminum alloy sheets was developed. For the description of planar anisotropy in warm forming temperatures, Barlat's yield function is employed, and the power law type constitutive equation is used in terms of working temperatures fur the depiction of work hardening in high temperatures. Also, Jetture's 4-node shell elements are introduced for reflecting the mechanical behavior of aluminum alloy sheet and the non-steady heat balance equations are solved for considering heat gain and loss during the forming process. For the springback evaluation, Newton-Raphson iteration method is introduced for overcoming the geometric nonlinearlity problem. In order to verify the validity of the FEM program developed, the stretching bending and springback processes are simulated. Though springback analysis results are slightly bigger than experimental ones, they have the same trend of the decreasing springback as the forming temperature increases.

  • PDF

자동차용 냉간압연재의 원형 드로우비드 성형시 강판 재질별 마찰특성에 관한 연구 (Study on the Friction Characteristics of Various Panels in Circular Drawbead Forming of Cold Rolled Steels for Automotive Parts)

  • 김대현;이동활;김원태;문영훈
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 제5회 압연심포지엄 신 시장 개척을 위한 압연기술
    • /
    • pp.83-90
    • /
    • 2004
  • The drawbead is one of the most important factors in sheet metal forming for automotive parts. So clarifying the friction characteristics between sheets and drawbead is essential to improve the formability of sheet metal. Therefore in this study, drawbead friction test was performed at various panels(cold rolled steel sheets, galvanized steel sheets, electrogalvanized coating steel sheets, electrogalvanized Zn-Fe alloy steel sheets and aluminum alloy steel sheets). Circular shape bead has been used for the test. The results show that friction and drawing characteristics were mainly influenced by the nature of zinc coating.

  • PDF

이종 알루미늄의 ARB공정에 의한 초미세립 복합알루미늄합금판재의 제조 및 평가 (Fabrication and Estimation of an Ultrafine Grained Complex Aluminum Alloy Sheet by the ARB Process Using Dissimilar Aluminum Alloys)

  • 이성희;강창석
    • 대한금속재료학회지
    • /
    • 제49권11호
    • /
    • pp.893-899
    • /
    • 2011
  • Fabrication of a complex aluminum alloy by the ARB process using dissimilar aluminum alloys has been carried out. Two-layer stack ARB was performed for up to six cycles at ambient temperature without a lubricant according to the conventional procedure. Dissimilar aluminum sheets of AA1050 and AA5052 with thickness of 1 mm were degreased and wire-brushed for the ARB process. The sheets were then stacked together and rolled to 50% reduction such that the thickness became 1 mm again. The sheet was then cut into two pieces of identical length and the same procedure was repeated for up to six cycles. A sound complex aluminum alloy sheet was successfully fabricated by the ARB process. The tensile strength increased as the number of ARB cycles was increased, reaching 298 MPa after 5 cycles, which is about 2.2 times that of the initial material. The average grain size was $24{\mu}m$ after 1 cycle, and became $1.8{\mu}m$ after 6 cycles.

Microstructural Evolution of a Cold Roll-Bonded Multi-Layer Complex Aluminum Sheet with Annealing

  • Jo, Sang-Hyeon;Lee, Seong-Hee
    • 한국재료학회지
    • /
    • 제32권2호
    • /
    • pp.72-79
    • /
    • 2022
  • A cold roll-bonding process using AA1050, AA5052 and AA6061 alloy sheets is performed without lubrication. The roll-bonded specimen is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 sheets are alternately stacked. The microstructural evolution with the increase of annealing temperature for the roll-bonded aluminum sheet is investigated in detail. The roll-bonded aluminum sheet shows a typical deformation structure in which the grains are elongated in the rolling direction over all regions. However, microstructural evolution of the annealed specimen is different depending on the type of material, resulting in a heterogeneous microstructure in the thickness direction of the layered aluminum sheet. Complete recrystallization occurs at 250 ℃ in the AA5052 region, which is lower by 100K than that of the AA1050 region. Variation of the misorientation angle distribution and texture development with increase of annealing temperature also differ depending on the type of material. Differences of microstructural evolution between aluminum alloys with increase of annealing temperature can be mainly explained in terms of amounts of impurities and initial grain size.

SPOT 용접을 이용한 알루미늄계 합금의 용접성 평가 (Evaluation of Resistance Spot Welding Weldability of Aluminum Alloy 5000 Series)

  • 고준빈;염동빈;최병길;이성구;김엄기
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.8-13
    • /
    • 2002
  • In order to obtain the basic informations for the development of high strength and high weldability aluminum alloy sheets, the experimental study was carried out to evaluate resistance spot welding characteristics and welding parameters (welding current, welding time, electrode force) far the aluminum alloy sheets. The mechanical properties of spot weld of aluminum alloy were evaluated by tensile shear test and by peel test at room temperature and also the welding possible zone was established through variation of current electrode force and welding time.

차체용 알루미늄합금의 인산염피막 처리액의 특성 관한 연구 (A study on the characteristics of phosphating solution for automobile-aluminum-body sheets)

  • 이규환;노병호;김만
    • 한국표면공학회지
    • /
    • 제27권4호
    • /
    • pp.207-214
    • /
    • 1994
  • In consideration of global environmental protection and fuel saving, aluminum alloy sheets for auto body panels such as hood, fender etc., are expected one of the most promising materials for weight saving of cars. The chemical conversion coating is required to prevent the filiform corrosion occurring on painted aluminum. However the conventional process for the composited material mixed with aluminum and steel is complexs; aluminum part is chromated and assembled to the body, and then the steel body undergoes Zn phosphating. In order to overcome the low productivity due to the complex process and the environmental problem with a conventional process, a simultaneous zinc phosphating process for alsuminum and steel in an assembled condition is demanded. Newly developed phosphate solution has been investigated to characterize the phosphating behavior under various conditions. The optimum conditions of the phosphating solution for the application of the paint treatment derived as follows : about 0.3 for the ratio of Zn to $PO_4$, , 200~500 ppm for the concentration of fluoride ion, and 2.5~4.0 for pH. The concentration of dissolved aluminum ion must be kept below 2--ppm and suitable accelerator is found to be a mixture of 1g/$\ell$ $NO_2\;^-$, and 6g/$\ell$ $NO_3\;^-$.

  • PDF

3527/4343 알루미늄 클래드재의 인장 및 침식특성에 미치는 미세조직 제어의 영향 (Effect of Microstructure Control on the Tensile and Erosion Properties of 3527/4343 Aluminum Clad)

  • 어광준;김수현;김형욱;김동배;오영미
    • 소성∙가공
    • /
    • 제22권5호
    • /
    • pp.264-268
    • /
    • 2013
  • Aluminum clad sheets for brazing materials in the automotive heat exchangers are required to exhibit both high strength and excellent erosion resistance. In this study, the effects of microstructural changes on the property of clad sheets due to thermomechanical treatment were investigated. The clad sheets were fabricated by roll bonding of twin-roll-cast AA3527 and AA4343 alloys followed by cold rolling down to a thickness of 0.22mm. Partial or full annealing was conducted at the final thickness in order to improved the erosion resistance while keeping the proper strength. Since full annealing was achieved for a temperature of $400^{\circ}C$, annealing treatments were performed at 360, 380, and $400^{\circ}C$, respectively. The tensile strength of 3527/4343 clad material was found to be inversely proportional to the annealing temperature before the brazing heat treatment. After this latter treatment, however, the tensile strength of the clad material was about 195~200MPa regardless of the annealing temperature. The erosion depth ratio of the clad annealed at $400^{\circ}C$ was 8.8% (the lowest), while that of the clad annealed at $380^{\circ}C$ was 17% (the highest). The effect of annealing temperature on the tensile and erosion properties of 3527/4343 aluminum clad sheets was elucidated by means of microstructural analyses.

평면 응력 조건에서 정의된 비이차 비등방 변형률 속도 포텐셜 (Non-Quadratic Anisotropic Strain Rate Potential Defined in Plane Stress State)

  • 김대용;김지훈;이영선;;정관수
    • 소성∙가공
    • /
    • 제20권5호
    • /
    • pp.369-376
    • /
    • 2011
  • 본 연구를 통하여 비이차 비등방 항복 응력 포텐셜들의 근접 짝되는 변형률 속도 포텐셜들에 대해서 정리하고 Yld2000-2d의 근접 짝되는 Srp2003-2d에 대해서 상세 설명하였다. 제안된 비이차 비등방 변형률 속도 포텐셜 Srp2003-2d 식 형태가 소개 되었고, 볼록성이 증명되었다. 아울러 이방성 상수를 구하는 방법이 제시되었다. Srp2003-2d의 소성 거동을 살펴보기 위하여 자동차 용 알루미늄 합금 판재 AA6022-T4와 항공재료용 알루미늄 합금 AA2090-T3에 응용되었다. Srp2003-2d는 항복 응력 포텐셜 Yld2000-2d와 거의 흡사한 짝됨을 보여 주었으며, 알루미늄 판재의 비등방성을 적절히 묘사하였다. Srp2003-2d는 알루미늄 판재의 성형 공정의 모사를 위하여 이상 공정 이론을 비롯한 강소성체 재료에 대한 정식화에 적절히 응용될 수 있을 것이다.