DOI QR코드

DOI QR Code

Microstructural Evolution of a Cold Roll-Bonded Multi-Layer Complex Aluminum Sheet with Annealing

  • Jo, Sang-Hyeon (Department of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Seong-Hee (Department of Advanced Materials Science and Engineering, Mokpo National University)
  • Received : 2021.12.15
  • Accepted : 2022.01.18
  • Published : 2022.02.27

Abstract

A cold roll-bonding process using AA1050, AA5052 and AA6061 alloy sheets is performed without lubrication. The roll-bonded specimen is a multi-layer complex aluminum alloy sheet in which the AA1050, AA5052 and AA6061 sheets are alternately stacked. The microstructural evolution with the increase of annealing temperature for the roll-bonded aluminum sheet is investigated in detail. The roll-bonded aluminum sheet shows a typical deformation structure in which the grains are elongated in the rolling direction over all regions. However, microstructural evolution of the annealed specimen is different depending on the type of material, resulting in a heterogeneous microstructure in the thickness direction of the layered aluminum sheet. Complete recrystallization occurs at 250 ℃ in the AA5052 region, which is lower by 100K than that of the AA1050 region. Variation of the misorientation angle distribution and texture development with increase of annealing temperature also differ depending on the type of material. Differences of microstructural evolution between aluminum alloys with increase of annealing temperature can be mainly explained in terms of amounts of impurities and initial grain size.

Keywords

Acknowledgement

Following are results of a study on the "Leaders in Industry-university Cooperation+" Project, supported by the Ministry of Education and National Research Foundation of Korea.

References

  1. L. Ding, Y. Weng, S. Wu, R. E. Sansers, Z. Jia and Q. Liu, Mater. Sci. Eng., A, 651, 991 (2016). https://doi.org/10.1016/j.msea.2015.11.050
  2. S. J. Park, T. Li, C. H. Kim, J. P. Park and S. Y. Chang, Korean J. Mater. Res., 22, 97 (2012). https://doi.org/10.3740/MRSK.2012.22.2.97
  3. S. H. Lee and G. J. Lee, Korean J. Mater. Res., 21, 655 (2011). https://doi.org/10.3740/MRSK.2011.21.12.655
  4. X. Fan, Z. He, W. Zhou and S. Yuan, J. Mater. Process. Technol., 228, 179 (2016). https://doi.org/10.1016/j.jmatprotec.2015.10.016
  5. J. H. Yang and S. H. Lee, Korean J. Mater. Res., 26, 628 (2016). https://doi.org/10.3740/MRSK.2016.26.11.628
  6. M. Jeong, J. Lee and J. H. Han, Korean J. Mater. Res., 29, 10 (2019).
  7. S. J. Oh and S. H. Lee, Korean J. Mater. Res., 28, 534 (2018). https://doi.org/10.3740/MRSK.2018.28.9.534
  8. E. H. Kim, H. H. Cho and K. H. Song, Korean J. Mater. Res., 27, 276 (2017). https://doi.org/10.3740/MRSK.2017.27.5.276
  9. N. V. Govindaraj, S. Lauvdal and B. Holmedal, J. Mater. Process. Technol., 213, 955 (2013). https://doi.org/10.1016/j.jmatprotec.2013.01.007
  10. R. Jamaati and M. R. Toroghinejad, Mater. Des., 31, 4508 (2010). https://doi.org/10.1016/j.matdes.2010.04.022
  11. H. Yan and J. G. Lenard, Mater. Sci. Eng., A, 385, 419 (2004). https://doi.org/10.1016/S0921-5093(04)00906-2
  12. M. J. Ahn, H. S. You and S. H. Lee, Korean J. Mater. Res., 26, 388 (2016). https://doi.org/10.3740/MRSK.2016.26.7.388
  13. J. Y. Hwang and S. H. Lee, Korean J. Mater. Res., 29, 392 (2019). https://doi.org/10.3740/MRSK.2019.29.6.392
  14. N. Kamikawa, N. Tsuji, X. Huang and N. Hansen, Acta Mater., 54, 3055 (2006). https://doi.org/10.1016/j.actamat.2006.02.046
  15. S. H. Lee, Arch. Metall. Mater., 65, 1093 (2020).
  16. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd Ed., p. 229. Elsevia Ltd., UK (2004).