• 제목/요약/키워드: Alumina nitride

검색결과 57건 처리시간 0.025초

A Study on the properties of aluminum nitride films on the Al7075 deposited by pulsed DC reactive magnetron sputtering

  • Kim, Jung-hyo;Cha, Byung-Chul;Lee, Keun-Hak;Park, Won-Wook
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2012년도 추계총회 및 학술대회 논문집
    • /
    • pp.179-180
    • /
    • 2012
  • Aluminum alloys are widely known as non-ferrous metal with light weight and high strength. Consequently, these materials take center stage in the aircraft and automobile industry. The Al7075 aluminum alloy is based on the Al-Zn-Mg-Cu and one of the strongest wrought aluminum alloys. Aluminum nitride has ten times higher thermal conductivity($319W/m{\cdot}K$) than Al2O3 and also has outstanding electric insulation($1{\times}1014{\Omega}{\cdot}cm$). Furthermore, it has high mechanical property (430 MPa) even though its co-efficient of thermal expansion is less than alumina For these reasons, it has great possibilities to be used for not only the field which needs high strength lightweight but also electronic material field because of its suitability to be applied to the insulator film of PCB or wafer of ceramic with high heat conduction. This paper investigates the mechanical properties and corrosion behavior of aluminum alloy Al7075 deposited with aluminum nitride thin films To improve the surface properties of Al7075 with respect to hardness, and resistance to corrosion, aluminum nitride thin films have been deposited by pulsed DC reactive magnetron sputtering. The pulsed DC power provides arc-free deposition of insulating films.

  • PDF

Nanostructured Bulk Ceramics (Part I)

  • Han, Young-Hwan;Mukherjee, Amiya K.
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.225-228
    • /
    • 2009
  • The processing and characterization of ceramic nanocomposites, which produce bulk nanostructures with attractive mechanical properties, have been emphasized and introduced at Prof. Mukherjee's Lab at UC Davis. The following subjects will be introduced in detail in Part II, III, and IV. In Part II, the paper will describe a three-phase alumina-based nanoceramic composite demonstrating superplasticity at a surprisingly lower temperature and higher strain rate. The next part will show that an alumina-carbon nanotube-niobium nanocomposite produced fracture toughness values that are three times higher than that of pure nanocrystalline alumina. It was possible to take advantage of both fiber-toughening and ductile-metal toughening in this investigation. In the fourth section, discussed will be a silicon-nitride/silicon-carbide nanocomposite, produced by pyrolysis of liquid polymer precursors, demonstrating one of the lowest creep rates reported so far in ceramics at the comparable temperature of $1400^{\circ}C$. This was first achieved by avoiding the oxynitride glass phase at the intergrain boundaries. One important factor in the processing of these nanocomposites was the use of the electrical field assisted sintering method. This allowed the sintering to be completed at significantly lower temperatures and during much shorter times. These improvements in mechanical properties will be discussed in the context of the results from the microstructural investigations.

구름접촉시 세라믹의 거시적 마모특성 (Macroscopic Wear Characteristics of Ceramics under the Rolling Contact)

  • Kim, Seock-Sam;Koto, Kohji;Hokkirigawa, Kzauo
    • Tribology and Lubricants
    • /
    • 제5권1호
    • /
    • pp.28-35
    • /
    • 1989
  • The wear tests of ceramic materials in dry rolling contact were carried out at room temperature to investigate their macroscopic wear characteristics. Both point contact and line cootact were adapted in the wear tests of them. Ceramic materials used in these tests were silicon nitride, silicon carbide, cermet of TiN and TiC, titania, and alumina. The wear test of the bearing steel was carried out to compare to the wear test results of the ceramic materials. The results showed that the wear rate of silicon nitride was smaller than any other ceramic materials and bearing steel. In the steady wear, the wear volume of ceramic materials increases linearly with the rolling distance. It was also found from the experimental results that fracture toughness and surface roughness dominate the wear process of ceramic materials in dry rolling contact.

Microstructural Wear Mechanism of $Al_2O_3-5$ vol% SiC nanocomposite and $Si_3N_4$Ceramics

  • Riu, Doh-Hyung;Kim, Yoon-Ho;Lee, Soo-Wohn;Koichi Niihara
    • 한국분말재료학회지
    • /
    • 제8권3호
    • /
    • pp.179-185
    • /
    • 2001
  • Through the observation of wear scar of two ceramic materials, microstructural wear mechanisms was investigated. As for the $Al_2O_3$-5 vol% SiC nanocomposite, the grain boundary fracture was suppressed by the presence of SiC nano-particles. The intragranular SiC particles have inhibited the extension of plastic deformation through the whole grain. Part of plastic deformation was accommodated around SiC particles, which made a cavity at the interface between SiC and matrix alumina. On the other hand, gas-pressure sintered silicon nitride showed extensive grain boundary fracture due to the thermal fatigue. The lamination of wear scar was initiated by the dissolution of grain boundary phase. These two extreme cases showed the importance of microstructures in wear behavior.

  • PDF

비정질합금 박판 제조용 노즐 재료의 내구성평가 (Durability of Nozzle Materials for Strip Casting of Amorphous Alloys)

  • 강복현;김기영
    • 한국주조공학회지
    • /
    • 제31권5호
    • /
    • pp.267-273
    • /
    • 2011
  • Erosion and thermal shock resistance of several refractory materials have been investigated, which are expected to be used as nozzles in a planar flow casting equipment for amorphous alloys. The test was conducted on five materials; graphite, boron nitride, fused silica, alumina and zirconia. Test specimens were preheated and dipped into the melt of carbon steel and amorphous alloys. Some test specimens were rotated to develop high erosion and to shorten the test periods. Fused silica and boron nitride specimens showed the excellent erosion and thermal shock resistance irrespective of the kind of melt and melting atmosphere.

구조용 세라믹스의 자동차와 제조업에의 응용 (Structural Ceramics for Automobiles and Industrial Application in Japan)

  • 오카다 아키라
    • 세라미스트
    • /
    • 제9권6호
    • /
    • pp.7-11
    • /
    • 2006
  • The status of structural ceramics in Japan is presented. Use of ceramics for structural components had been limited due to their brittleness, and the successful application was wear resistant parts such as thread guides and ceramic cutting tools up to around 1980. Since then, considerable work has been done for applying ceramics to mechanical parts, and automotive components made of silicon nitride were developed and commercialized in 1980s. Unfortunately, the application of silicon nitride to automotive engines is not so popular in these days. Instead, a variety of structural ceramics such as alumina, silicon carbide and zirconia have recently extended the market, and the expanded application includes vacuum process parts for manufacturing semiconductor and liquid crystal devices, refractory tubes for casting aluminum alloy, and dies for optical lens forming. In addition, cordierite honeycombs and diesel particulate filters are widely used in automobiles. In the present review, the recent application of structural ceramics to automobiles and industries in Japan is summarized.

  • PDF

Morphologically Controlled Growth of Aluminum Nitride Nanostructures by the Carbothermal Reduction and Nitridation Method

  • Jung, Woo-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권7호
    • /
    • pp.1563-1566
    • /
    • 2009
  • One-dimensional aluminum nitride (AlN) nanostructures were synthesized by calcining an Al(OH)(succinate) complex, which contained a very small amount of iron as a catalyst, under a mixed gas flow of nitrogen and CO (1 vol%). The complex decomposed into a homogeneous mixture of alumina and carbon at the molecular level, resulting in the lowering of the formation temperature of the AlN nanostructures. The morphology of the nanostructures such as nanocone, nanoneedle, nanowire, and nanobamboo was controlled by varying the reaction conditions, including the reaction atmosphere, reaction temperature, duration time, and ramping rate. Iron droplets were observed on the tips of the AlN nanostructures, strongly supporting that the nanostructures grow through the vapor-liquid-solid mechanism. The variation in the morphology of the nanostructures was well explained in terms of the relationship between the diffusion rate of AlN vapor into the iron droplets and the growth rate of the nanostructures.

Physical Adsorption of Nitrogen Gas on BN, Alumina, and Silica-Gel Powders

  • Cho, Hyun-Woo;Kim, Jung-Soo;Yoo, Eun-Ah;Ahn, Woon-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • 제9권4호
    • /
    • pp.244-248
    • /
    • 1988
  • Multilayer adsorption isotherms of nitrogen on hexagonal boron nitride, ${\gamma}$-alumina, and silica-gel powders are determined at the liquid nitrogen temperature using a gravimetric adsorption apparatus. The volume (V) of the adsorbed gas are plotted against the statistical thickness(t) of the adsorbed layer, and the t-method area are calculated from the slope of these V-t plots to compare with the BET area. A number of universal adsorption isotherms and the Frenkel-Halsey-Hill equation are used one after another in calculating the statistical thickness. The appropriateness of the FHH equation as an universal adsorption isotherm is discussed finally.

비표면적 인증표준물질 개발 (Development of Certified Reference Materials for Specific Surface Area)

  • 최병일;김종철;김태영;남현수;권수용
    • 분석과학
    • /
    • 제18권1호
    • /
    • pp.74-84
    • /
    • 2005
  • NT, BT 산업의 발달에 함께 계면에서의 흡착특성의 파악은 신물질의 개발이나 공정의 첨단화에서 꼭 필요한 과제가 되고 있다. 체적식 가스흡착방법은 정량적인 흡착량의 측정이 가능하여 비표면적의 표준측정장비로 인식되고 있다. 상용 비표면적 측정장비의 신뢰성 검증을 위하여 인증표준물질을 개발하였고, SI 단위에 소급성을 유지하는 표준장비에 의해 불확도가 평가되었다. 제작된 인증물질은 비표면적이 $10.72{\pm}0.46m^2g^{-1}$ 인 silicon nitride 분말과 $149.50{\pm}3.44m^2g^{-1}$ 인 alumina 분말이다. 이런 검증된 인증물질의 보급은 산업계에 신뢰성 있는 비표면적 측정결과를 줌으로서, 일관성 있는 공정운용에 의한 품질관리, 생산성 향상, 안정성 판단 및 신제품 개발 등에 기여할 것이다.

The effect of alumina and aluminium nitride coating by reactive magnetron sputtering on the resin bond strength to zirconia core

  • Kulunk, Tolga;Kulunk, Safak;Baba, Seniha;Ozturk, Ozgur;Danisman, Sengul;Savas, Soner
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권4호
    • /
    • pp.382-387
    • /
    • 2013
  • PURPOSE. Although several surface treatments have been recently investigated both under in vitro and in vivo conditions, controversy still exists regarding the selection of the most appropriate zirconia surface pre-treatment. The purpose of this study was to evaluate the effect of alumina (Al) and aluminium nitride (AlN) coating on the shear bond strength of adhesive resin cement to zirconia core. MATERIALS AND METHODS. Fifty zirconia core discs were divided into 5 groups; air particle abrasion with 50 ${\mu}m$ aluminum oxide particles ($Al_2O_3$), polishing + Al coating, polishing + AlN coating, air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + Al coating and air particle abrasion with 50 ${\mu}m$ $Al_2O_3$ + AlN coating. Composite resin discs were cemented to each of specimens. Shear bond strength (MPa) was measured using a universal testing machine. The effects of the surface preparations on each specimen were examined with scanning electron microscope (SEM). Data were statistically analyzed by one-way ANOVA (${\alpha}$=.05). RESULTS. The highest bond strengths were obtained by air abrasion with 50 ${\mu}m$ $Al_2O_3$, the lowest bond strengths were obtained in polishing + Al coating group (P<.05). CONCLUSION. Al and AlN coatings using the reactive magnetron sputtering technique were found to be ineffective to increase the bond strength of adhesive resin cement to zirconia core.