• Title/Summary/Keyword: Alternative toxicity testing

Search Result 24, Processing Time 0.023 seconds

Screening of toxic potential of graphene family nanomaterials using in vitro and alternative in vivo toxicity testing systems

  • Chatterjee, Nivedita;Yang, Ji Su;Park, Kwangsik;Oh, Seung Min;Park, Jeonggue;Choi, Jinhee
    • Environmental Analysis Health and Toxicology
    • /
    • v.30
    • /
    • pp.7.1-7.7
    • /
    • 2015
  • Objectives The widely promising applications of graphene nanomaterials raise considerable concerns regarding their environmental and human health risk assessment. The aim of the current study was to evaluate the toxicity profiling of graphene family nanano-materials (GFNs) in alternative in vitro and in vivo toxicity testing models. Methods The GFNs used in this study are graphene nanoplatelets ([GNPs]-pristine, carboxylate [COOH] and amide [$NH_2$]) and graphene oxides (single layer [SLGO] and few layers [FLGO]). The human bronchial epithelial cells (Beas2B cells) as in vitro system and the nematode Caenorhabditis elegans as in vivo system were used to profile the toxicity response of GFNs. Cytotoxicity assays, colony formation assay for cellular toxicity and reproduction potentiality in C. elegans were used as end points to evaluate the GFNs' toxicity. Results In general, GNPs exhibited higher toxicity than GOs in Beas2B cells, and among the GNPs the order of toxicity was pristine > $NH_2$ > COOH. Although the order of toxicity of the GNPs was maintained in C. elegans reproductive toxicity, but GOs were found to be more toxic in the worms than GNPs. In both systems, SLGO exhibited profoundly greater dose dependency than FLGO. The possible reason of their differential toxicity lay in their distinctive physicochemical characteristics and agglomeration behavior in the exposure media. Conclusions The present study revealed that the toxicity of GFNs is dependent on the graphene nanomaterial's physical forms, surface functionalizations, number of layers, dose, time of exposure and obviously, on the alternative model systems used for toxicity assessment.

Alternative Methods for Testing Botulinum Toxin: Current Status and Future Perspectives

  • Nepal, Mahesh Raj;Jeong, Tae Cheon
    • Biomolecules & Therapeutics
    • /
    • v.28 no.4
    • /
    • pp.302-310
    • /
    • 2020
  • Botulinum toxins are neurotoxic modular proteins composed of a heavy chain and a light chain connected by a disulfide bond and are produced by Clostridium botulinum. Although lethally toxic, botulinum toxin in low doses is clinically effective in numerous medical conditions, including muscle spasticity, strabismus, hyperactive urinary bladder, excessive sweating, and migraine. Globally, several companies are now producing products containing botulinum toxin for medical and cosmetic purposes, including the reduction of facial wrinkles. To test the efficacy and toxicity of botulinum toxin, animal tests have been solely and widely used, resulting in the inevitable sacrifice of hundreds of animals. Hence, alternative methods are urgently required to replace animals in botulinum toxin testing. Here, the various alternative methods developed to test the toxicity and efficacy of botulinum toxins have been briefly reviewed and future perspectives have been detailed.

Toxicogenomics and Cell-based Assays for Toxicology

  • Tong, Weida;Fang, Hong;Mendrick, Donna
    • Interdisciplinary Bio Central
    • /
    • v.1 no.3
    • /
    • pp.10.1-10.5
    • /
    • 2009
  • Toxicity is usually investigated using a set of standardized animal-based studies which, unfortunately, fail to detect all compounds that induce human adverse events and do not provide detailed mechanistic information of observed toxicity. As an alternative to conventional toxicology, toxicogenomics takes advantage of currently advanced technologies in genomics, proteomics, metabolomics, and bioinformatics to gain a molecular level understanding of toxicity and to enhance the predictive power of toxicity testing in drug development and risk/safety assessment. In addition, there has been a renewed interest, particularly in various government agencies, to prioritize and/or supplement animal testing with a battery of mechanistically informative in vitro assays. This article provides a brief summary of the issues, challenges and lessons learned in these fields and discuss the ways forward to further advance toxicology using these technologies.

Act on the Registration and Evaluation of Chemicals (K-REACH) and replacement, reduction or refinement best practices

  • Ha, Soojin;Seidle, Troy;Lim, Kyung-Min
    • Environmental Analysis Health and Toxicology
    • /
    • v.31
    • /
    • pp.26.1-26.9
    • /
    • 2016
  • Objectives Korea's Act on the Registration and Evaluation of Chemicals (K-REACH) was enacted for the protection of human health and the environment in 2015. Considering that about 2000 new substances are introduced annually across the globe, the extent of animal testing requirement could be overwhelming unless regulators and companies work proactively to institute and enforce global best practices to replace, reduce or refine animal use. In this review, the way to reduce the animal use for K-REACH is discussed. Methods Background of the enforcement of the K-REACH and its details was reviewed along with the papers and regulatory documents regarding the limitation of animal experiments and its alternatives in order to discuss the regulatory adoption of alternative tests. Results Depending on the tonnage of the chemical used, the data required ranges from acute and other short-term studies for a single exposure route to testing via multiple exposure routes and costly, longer-term studies such as a full two-generation reproducibility toxicity. The European Registration, Evaluation, Authorization and Restriction of Chemicals regulation provides for mandatory sharing of vertebrate test data to avoid unnecessary duplication of animal use and test costs, and obligation to revise data requirements and test guidelines "as soon as possible" after relevant, validated replacement, reduction or refinement (3R) methods become available. Furthermore, the Organization for Economic Cooperation and Development actively accepts alternative animal tests and 3R to chemical toxicity tests. Conclusions Alternative tests which are more ethical and efficient than animal experiments should be widely used to assess the toxicity of chemicals for K-REACH registration. The relevant regulatory agencies will have to make efforts to actively adopt and uptake new alternative tests and 3R to K-REACH.

Advances in the Development and Validation of Test Methods in the United States

  • Casey, Warren M.
    • Toxicological Research
    • /
    • v.32 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • The National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM) provides validation support for US Federal agencies and the US Tox21 interagency consortium, an interagency collaboration that is using high throughput screening (HTS) and other advanced approaches to better understand and predict chemical hazards to humans and the environment. The use of HTS data from assays relevant to the estrogen receptor signaling data pathway is used as an example of how HTS data can be combined with computational modeling to meet the needs of US agencies. As brief summary of US efforts in the areas of biologics testing, acute toxicity, and skin sensitization will also be provided.

Novel Alternative Methods in Toxicity Testing

  • Satoh, Tetsuo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1994.04a
    • /
    • pp.129-130
    • /
    • 1994
  • The science of toxicology is the understanding of the mechanisms by which exogenous agents produce deleterious effects in biological systems. The actions of chemicals such as drugs are ultimately exerted at the cellular and gene levels. Over the past decade. several in vitro alternative methods such as cultured cells for assessing the toxicity of various xenobiotics have been proposed to reduce the use of animals. In this workshop three advanced methods will be presented. These methods are novel important models for toxicologic studies. Dr. Tabuchis group has establishcd two immortalized gastric surface mucosa cell lines from the pminary cultore of gastric fundic mucosal cells of adult transgenic mice harboring a temperature sensitive simian virus 40 large T-anugen gene. As the immortalized cell lines of various tissues possess unique characteristics to maintain their normal functions for several months, these cell lines are extremely useful for not only toxicity testing but also pharmacological screening in new drug development. Professor Funatsu have studied the formation of spherical multicelluar aggregates of adult rat hepatocytes(spheroid) having tissue like structure. The sphcroid shown thre is a prototype module of an artificial liver support system. Thus, the urea synthesis activity of the artificial liver was maintained at least to days in 100% rat blood plasma. Dr. Takezawa and his coworkers have developed a novel culture system of multicellular spheroids considered 〃organoids〃 by utilizing a thermo-responsive polymer as a substratum of anchorage dependent cells. His final goal is to reconstitute the organoids of various normal organs, e.g., liver, skin etc. and also abnormal deseased organs such as tumor.

  • PDF

RECENT ADVANCES IN HEPATOTOXICITY STUDIES

  • Satoh, Tetsuo
    • Toxicological Research
    • /
    • v.7 no.2
    • /
    • pp.113-128
    • /
    • 1991
  • Hepatotoxicity has many facets. Those to be discussed in this review include the mechanism for the hepatotoxic effects, nature of the injury, and animal models of hepatotoxicity suitable for the detection of chemical injury. Some therapeutic drugs used for treatment of hepatitis are also presented. In addition, as an important and serious problem in future, alternative toxicity testing is discussed.

  • PDF

Trends in MEA-based Neuropharmacological Drug Screening (MEA 기반 신경제약 스크리닝 기술 개발 동향)

  • Y.H. Kim;S.D. Jung
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.1
    • /
    • pp.46-54
    • /
    • 2023
  • The announcement of the US Environmental Protection Agency that it will stop conducting or funding experimental studies on mammals by 2035 should prioritize ongoing efforts to develop and use alternative toxicity screening methods to animal testing. Toxicity screening is likely to be further developed considering the combination of human-induced pluripotent-stem-cell-derived organ-on-a-chip and multielectrode array (MEA) technologies. We briefly review the current status of MEA technology and MEA-based neuropharmacological drug screening using various cellular model systems. Highlighting the coronavirus disease pandemic, we shortly comment on the importance of early prediction of toxicity by applying artificial intelligence to the development of rapid screening methods.

Development of a Test Method for the Evaluation of DNA Damage in Mouse Spermatogonial Stem Cells

  • Jeon, Hye Lyun;Yi, Jung-Sun;Kim, Tae Sung;Oh, Youkyung;Lee, Hye Jeong;Lee, Minseong;Bang, Jin Seok;Ko, Kinarm;Ahn, Il Young;Ko, Kyungyuk;Kim, Joohwan;Park, Hye-Kyung;Lee, Jong Kwon;Sohn, Soo Jung
    • Toxicological Research
    • /
    • v.33 no.2
    • /
    • pp.107-118
    • /
    • 2017
  • Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration ($IC_{50}$) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity.

Trend of In Silico Prediction Research Using Adverse Outcome Pathway (독성발현경로(Adverse Outcome Pathway)를 활용한 In Silico 예측기술 연구동향 분석)

  • Sujin Lee;Jongseo Park;Sunmi Kim;Myungwon Seo
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.2
    • /
    • pp.113-124
    • /
    • 2024
  • Background: The increasing need to minimize animal testing has sparked interest in alternative methods with more humane, cost-effective, and time-saving attributes. In particular, in silico-based computational toxicology is gaining prominence. Adverse outcome pathway (AOP) is a biological map depicting toxicological mechanisms, composed of molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). To understand toxicological mechanisms, predictive models are essential for AOP components in computational toxicology, including molecular structures. Objectives: This study reviewed the literature and investigated previous research cases related to AOP and in silico methodologies. We describe the results obtained from the analysis, including predictive techniques and approaches that can be used for future in silico-based alternative methods to animal testing using AOP. Methods: We analyzed in silico methods and databases used in the literature to identify trends in research on in silico prediction models. Results: We reviewed 26 studies related to AOP and in silico methodologies. The ToxCast/Tox21 database was commonly used for toxicity studies, and MIE was the most frequently used predictive factor among the AOP components. Machine learning was most widely used among prediction techniques, and various in silico methods, such as deep learning, molecular docking, and molecular dynamics, were also utilized. Conclusions: We analyzed the current research trends regarding in silico-based alternative methods for animal testing using AOPs. Developing predictive techniques that reflect toxicological mechanisms will be essential to replace animal testing with in silico methods. In the future, since the applicability of various predictive techniques is increasing, it will be necessary to continue monitoring the trend of predictive techniques and in silico-based approaches.