Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.200

Alternative Methods for Testing Botulinum Toxin: Current Status and Future Perspectives  

Nepal, Mahesh Raj (College of Pharmacy, Yeungnam University)
Jeong, Tae Cheon (College of Pharmacy, Yeungnam University)
Publication Information
Biomolecules & Therapeutics / v.28, no.4, 2020 , pp. 302-310 More about this Journal
Abstract
Botulinum toxins are neurotoxic modular proteins composed of a heavy chain and a light chain connected by a disulfide bond and are produced by Clostridium botulinum. Although lethally toxic, botulinum toxin in low doses is clinically effective in numerous medical conditions, including muscle spasticity, strabismus, hyperactive urinary bladder, excessive sweating, and migraine. Globally, several companies are now producing products containing botulinum toxin for medical and cosmetic purposes, including the reduction of facial wrinkles. To test the efficacy and toxicity of botulinum toxin, animal tests have been solely and widely used, resulting in the inevitable sacrifice of hundreds of animals. Hence, alternative methods are urgently required to replace animals in botulinum toxin testing. Here, the various alternative methods developed to test the toxicity and efficacy of botulinum toxins have been briefly reviewed and future perspectives have been detailed.
Keywords
Botulinum toxin; Acetylcholine; In vitro; Alternative studies;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Dunning, F. M., Piazza, T. M., Zeytin, F. N. and Tucker, W. C. (2014) Isolation and quantification of botulinum neurotoxin from complex matrices using the BoTest matrix assays. J. Vis. Exp. 3, e51170.
2 Duthie, J. B., Vincent, M., Herbison, G. P., Wilson, D. I. and Wilson, D. (2011) Botulinum toxin injections for adults with overactive bladder syndrome. Cochrane Database Syst. Rev. 7, CD005493.
3 Ekong, T. A., Feavers, I. M. and Sesardic, D. (1997) Recombinant SNAP-25 is an effective substrate for Clostridium botulinum type A toxin endopeptidase activity in vitro. Microbiology 143, 3337-3347.   DOI
4 Escher, C. M., Paracka, L., Dressler, D. and Kollewe, K. (2017) Botulinum toxin in the management of chronic migraine: clinical evidence and experience. Ther. Adv. Neurol. Disord. 10, 127-135.   DOI
5 Fach, P., Micheau, P., Mazuet, C., Perelle, S. and Popoff, M. (2009) Development of real-time PCR tests for detecting botulinum neurotoxins A, B, E, F producing Clostridium botulinum, Clostridium baratii and Clostridium butyricum. J. Appl. Microbiol. 107, 465-473.   DOI
6 Food and Drug Administration (2017) Laboratory methods: bacteriological analytical manual (BAM). Available from: https://www.fda.gov/food/laboratory-methods-food/bam-clostridium-botulinum/.
7 Fernandez-Salas, E., Wang, J., Molina, Y., Nelson, J. B., Jacky, B. P. and Aoki, K. R. (2012) Botulinum neurotoxin serotype A specific cell-based potency assay to replace the mouse bioassay. PLoS ONE 7, e49516.   DOI
8 Ferreira, J. L. (2001) Comparison of amplified ELISA and mouse bioassay procedures for determination of botulinal toxins A, B, E, and F. J. AOAC Int. 84, 85-88.   DOI
9 Sesardic, D. and Das, R. G. (2007) Alternatives to the LD50 assay for botulinum toxin potency testing: strategies and progress towards refinement, reduction and replacement. In Proceeding of 6th World Congress on Alternatives and Animal Use in the Life Sciences, pp. 21-25. Tokyo, Japan.
10 Sesardic, D., McLellan, K., Ekong, T. A. and Das, R. G. (1996) Refinement and validation of an alternative bioassay for potency testing of therapeutic botulinum type A toxin. Pharmacol. Toxicol. 78, 283-288.   DOI
11 Sharma, S. K., Ferreira, J. L., Eblen, B. S. and Whiting, R. C. (2006) Detection of type A, B, E, and F Clostridium botulinum neurotoxins in foods by using an amplified enzyme-linked immunosorbent assay with digoxigenin-labeled antibodies. Appl. Environ.Microbiol. 72, 1231-1238.   DOI
12 Silberstein, S., Mathew, N., Saper, J. and Jenkins, S. (2000) Botulinum toxin type A as a migraine preventive treatment. Headache 40, 445-450.   DOI
13 Simon, S., Fiebig, U., Liu, Y., Tierney, R., Dano, J., Worbs, S., Endermann, T., Nevers, M. C., Volland, H. and Sesardic, D. (2015) Recommended immunological strategies to screen for botulinum neurotoxin-containing samples. Toxins 7, 5011-5034.   DOI
14 Small, R. (2014) Botulinum toxin injection for facial wrinkles. Am. Fam. Physician 90, 168-175.
15 Smith, T. J., Hill, K. K. and Raphael, B. H. (2015) Historical and current perspectives on Clostridium botulinum diversity. Front. Microbiol. 166, 290-302.
16 Snow, B. J., Tsui, J. K., Bhatt, M. H., Varelas, M., Hashimoto, S. A. and Calne, D. B. (1990) Treatment of spasticity with botulinum toxin: a double-blind study. Ann. Neurol. 28, 512-515.   DOI
17 Thirunavukkarasu, N., Johnson, E., Pillai, S., Hodge, D., Stanker, L., Wentz, T., Singh, B., Venkateswaran, K., McNutt, P., Adler, M., Brown, E., Hammack, T., Burr, D. and Sharma, S. (2018) Botulinum neurotoxin detection methods for public health response and surveillance. Front. Bioeng. Biotechnol. 6, 80.   DOI
18 Stephens, M. L. (2005) Nomination of alternative methods to replace the mouse LD50 assay for botulinum toxin potency testing. Test method nomination to the ICCVAM. New York, USA.
19 Szabo, E. A., Pemberton, J. M. and Desmarchelier, P. M. (1993) Detection of the genes encoding botulinum neurotoxin types A to E by the polymerase chain reaction. Appl. Environ. Microbiol. 59, 3011-3020.   DOI
20 Taylor, K., Gericke, C. and Alvarez, L. R. (2019) Botulinum toxin testing on animals is still a Europe-wide issue. ALTEX 36, 81-90.   DOI
21 Tornqvist, E., Annas, A., Granath, B., Jalkesten, E., Cotgreave, I. and Oberg, M. (2014) Strategic focus on 3R principles reveals major reductions in the use of animals in pharmaceutical toxicity testing. PLoS ONE 9, e101638.   DOI
22 Valenti, G., Fiorani, A., Li, H., Sojic, N. and Paolucci, F. (2016) Essential role of electrode materials in electrochemiluminescence applications. ChemElectroChem 3, 1990-1997.   DOI
23 Keller, J. E. and Neale, E. A. (2001) The role of the synaptic protein snap-25 in the potency of botulinum neurotoxin type A. J. Biol. Chem. 276, 13476-13482.   DOI
24 Forster, R. J., Bertoncello, P. and Keyes, T. E. (2009) Electrogenerated chemiluminescence. Annu. Rev. Anal. Chem. 2, 359-385.   DOI
25 von Berg, L., Stern, D., Pauly, D., Mahrhold, S., Weisemann, J., Jentsch, L., Hansbauer, E. M., Müller, C., Avondet, M. A., Rummel, A., Dorner, M. B. and Dorner, B. G. (2019) Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitopespecific antibodies and suspension array technology. Sci. Rep. 9, 5531.   DOI
26 Wictome, M., Newton, K., Jameson, K., Hallis, B., Dunnigan, P., Mackay, E., Clarke, S., Taylor, R., Gaze, J. and Foster, K. (1999) Development of an in vitro bioassay for Clostridium botulinum type B neurotoxin in foods that is more sensitive than the mouse bioassay. Appl. Environ. Microbiol. 65, 3787-3792.   DOI
27 Heckmann, M., Ceballos-Baumann, A. O. and Plewig, G. (2001) Botulinum toxin A for axillary hyperhidrosis (excessive sweating). N. Engl. J. Med. 344, 488-493.   DOI
28 Hodowanec, A. and Bleck, T. P. (2015) Botulism (Clostridium botulinum). In Mandell, Douglas, and Bennett's Principles and Practice of Infectious Diseases (8th ed.) (J. E. Bennett, R. Dolin and M. J. Blaser, Eds.), pp. 2763-2767.e2. Elsevier, Philadelphia.
29 Kalb, S., Baudys, J., Wang, D. and Barr, J. (2015) Recommended mass spectrometry-based strategies to identify botulinum neurotoxin- containing samples. Toxins 7, 1765-1778.   DOI
30 Kang, M., Han, A., Kim, D. E., Seidle, T., Lim, K. M. and Bae, S. (2018) Mental stress from animal experiments: a survey with Korean researchers. Toxicol. Res. 34, 75-81.   DOI
31 Kerner, J. (1817) Vergiftung durch verdorbene Würste. Tubinger Blatt Naturwissenschaften Arzneykunde 3, 1-25.
32 Kiris, E., Nuss, J. E., Burnett, J. C., Kota, K. P., Koh, D. C., Wanner, L. M., Torres-Melendez, E., Gussio, R., Tessarollo, L. and Bavari, S. (2011) Embryonic stem cell-derived motoneurons provide a highly sensitive cell culture model for botulinum neurotoxin studies, with implications for high-throughput drug discovery. Stem Cell Res. 6, 195-205.   DOI
33 Lentz, J. and Weingrow, D. (2018) Bulbar muscle weakness in the setting of therapeutic botulinum injections. Clin. Pract. Cases Emerg. Med. 2, 330-333.   DOI
34 Lindstrom, M. and Korkeala, H. (2006) Laboratory diagnostics of botulism. Clin. Microbiol. Rev. 19, 298-314.   DOI
35 Zechmeister, T. C., Farnleitner, A. H., Rocke, T. E., Pittner, F., Rosengarten, R., Mach, R. L., Herzig, A. and Kirschner, A. K. (2002) PCR and ELISA: in vitro alternatives to the mouse-bioassay for assessing the botulinum-neurotoxin-C1 production potential in environmental samples? ALTEX 19 Suppl 1, 49-54.
36 Wilder-Kofie, T. D., Luquez, C., Adler, M., Dykes, J. K., Coleman, J. D. and Maslanka, S. E. (2011) An alternative in vivo method to refine the mouse bioassay for botulinum toxin detection. Comp. Med. 61, 235-242.
37 Yadirgi, G., Stickings, P., Rajagopal, S., Liu, Y. and Sesardic, D. (2017) Immuno-detection of cleaved SNAP-25 from differentiated mouse embryonic stem cells provides a sensitive assay for determination of botulinum A toxin and antitoxin potency. J. Immunol. Methods 451, 90-99.   DOI
38 Zhang, Y., Lou, J., Jenko, K. L., Marks, J. D. and Varnum, S. M. (2012) Simultaneous and sensitive detection of six serotypes of botulinum neurotoxin using enzyme-linked immunosorbent assay-based protein antibody microarrays. Anal. Biochem. 430, 185-192.   DOI
39 Benedetto, A. V. (1999) The cosmetic uses of botulinum toxin type A. Int. J. Dermatol. 38, 641-655.   DOI
40 Alshadwi, A., Nadershah, M. and Osborn, T. (2015) Therapeutic applications of botulinum neurotoxins in head and neck disorders. Saudi Dent. J. 27, 3-11.   DOI
41 Bigalke, H. and Rummel, A. (2015) Botulinum neurotoxins: qualitative and quantitative analysis using the mouse phrenic nerve hemidiaphragm assay (MPN). Toxins 7, 4895-4905.   DOI
42 Bjornstad, K., Aberg, A. T., Kalb, S. R., Wang, D., Barr, J. R., Bondesson, U. and Hedeland, M. (2014) Validation of the Endopep-MS method for qualitative detection of active botulinum neurotoxins in Biomol Ther 28(4), 302-310 (2020) human and chicken serum. Anal. Bioanal. Chem. 406, 7149-7161.   DOI
43 Boyer, A. E., Moura, H., Woolfitt, A. R., Kalb, S. R., McWilliams, L. G., Pavlopoulos, A., Schmidt, J. G., Ashley, D. L. and Barr, J. R. (2005) From the mouse to the mass spectrometer: detection and differentiation of the endoproteinase activities of botulinum neurotoxins A-G by mass spectrometry. Anal. Chem. 77, 3916-3924.   DOI
44 Bulbring, E. (1946) Observations on the isolated phrenic nerve diaphragm preparation of the rat. Br. J. Pharmacol. Chemother. 1, 38-61.   DOI
45 de Medici, D., Anniballi, F., Wyatt, G. M., Lindstrom, M., Messelhäusser, U., Aldus, C. F., Delibato, E., Korkeala, H., Peck, M. W. and Fenicia, L. (2009) Multiplex PCR for detection of botulinum neurotoxinproducing clostridia in clinical, food, and environmental samples. Appl. Environ. Microbiol. 75, 6457-6461.   DOI
46 Lindstrom, M., Keto, R., Markkula, A., Nevas, M., Hielm, S. and Korkeala, H. (2001) Multiplex PCR assay for detection and identification of Clostridium botulinum types A, B, E, and F in food and fecal material. Appl. Environ. Microbiol. 67, 5694-5699.   DOI
47 Maslanka, S. E., Luquez, C., Raphael, B. H., Dykes, J. K. and Joseph, L. A. (2011) Utility of botulinum toxin ELISA A, B, E, F kits for clinical laboratory investigations of human botulism. Botulinum J. 2, 72-92.   DOI
48 McNutt, P., Beske, P. and Thirunavukkarsu, N. (2013) Cell-based assays for neurotoxin studies. In Biological Toxins and Bioterrorism (P. Gopalakrishnakone, M. Balali-Mood, L. Llewellyn and B. R. Singh, Eds.), pp. 247-271. Springer.
49 Nawrocki, E. M., Bradshaw, M. and Johnson, E. A. (2018) Botulinum neurotoxin-encoding plasmids can be conjugatively transferred to diverse clostridial strains. Sci. Rep. 8, 3100.   DOI
50 Nigam, P. K. and Nigam, A. (2010) Botulinum toxin. Indian J. Dermatol. 55, 8-14.   DOI
51 Nuss, J. E., Ruthel, G., Tressler, L. E., Wanner, L. M., Torres-Melendez, E., Hale, M. L. and Bavari, S. (2010) Development of cell-based assays to measure botulinum neurotoxin serotype A activity using cleavage-sensitive antibodies. J. Biomol. Screen. 15, 42-51.   DOI
52 Parks, B. A., Shearer, J. D., Baudys, J., Kalb, S. R., Sanford, D. C., Pirkle, J. L. and Barr, J. R. (2011) Quantification of botulinum neurotoxin serotypes A and B from serum using mass spectrometry. Anal. Chem. 83, 9047-9053.   DOI
53 Cheng, L. W. and Stanker, L. H. (2013) Detection of botulinum neurotoxin serotypes A and B using a chemiluminescent versus electrochemiluminescent immunoassay in food and serum. J. Agric. Food Chem. 61, 755-760.   DOI
54 Bushara, K. O., Park, D. M., Jones, J. C. and Schutta, H. S. (1996) Botulinum toxin-a possible new treatment for axillary hyperhidrosis. Clin. Exp. Dermatol. 21, 276-278.   DOI
55 Cai, S., Singh, B. R. and Sharma, S. (2007) Botulism diagnostics: from clinical symptoms to in vitro assays. Crit. Rev. Microbiol. 33, 109-125.   DOI
56 Capek, P. and Dickerson, T. (2010) Sensing the deadliest toxin: technologies for botulinum neurotoxin detection. Toxins 2, 24-53.   DOI
57 Carruthers, J. D. and Carruthers, A. (2002) Cosmetic use of botulinum toxin for treatment of downturned mouth. United States patent US6358917B1.
58 Cheng, L. W., Land, K. M. and Stanker, L. H. (2012) Current methods for detecting the presence of botulinum neurotoxins in food and other biological samples. In: Bioterrorism (S. A. Morse, Ed.), pp. 1-18. IntechOpen, London.
59 Cheng, W., Land, M., Tam, C., Brandon, D. L., Stanker, H. (2016) Technologies for detecting botulinum neurotoxins in biological and environmental matrices. In Significance, Prevention and Control of Food Related Diseases (H. Makun, Ed.), pp. 125-144. InTech, London.
60 Collins, A. and Nasir, A. (2010) Topical botulinum toxin. J. Clin. Aesthet. Dermatol. 3, 35-39.
61 Cox, L. and Cameron, A. P. (2014) OnabotulinumtoxinA for the treatment of overactive bladder. Res. Rep. Urol. 6, 79-89.
62 Dressler, D., Dirnberger, G., Bhatia, K. P., Irmer, A., Quinn, N. P., Bigalke, H. and Marsden, C. D. (2000) Botulinum toxin antibody testing: comparison between the mouse protection assay and the mouse lethality assay. Mov. Disord. 15, 973-976.   DOI
63 Rasooly, R. and Do, P. M. (2008) Development of an in vitro activity assay as an alternative to the mouse bioassay for Clostridium botulinum neurotoxin type A. Appl. Environ. Microbiol. 74, 4309-4313.   DOI
64 Peck, M. (2006) Clostridiumbotulinum and the safety of minimally heated, chilled foods: an emerging issue? J. Appl. Microbiol. 101, 556-570.   DOI
65 Pellett, S. (2013) Progress in cell based assays for botulinum neurotoxin detection. Curr. Top. Microbiol. Immunol. 364, 257-285.
66 Pirazzini, M., Rossetto, O., Eleopra, R. and Montecucco, C. (2017) Botulinum neurotoxins: biology, pharmacology, and toxicology. Pharmacol. Rev. 69, 200-235.   DOI
67 Raphael, B. H. (2012) Exploring genomic diversity in Clostridium botulinum using DNA microarrays. Botulinum J. 2, 99-108.   DOI
68 Rasetti-Escargueil, C., Liu, Y., Rigsby, P., Jones, R. G. A. and Sesardic, D. (2011) Phrenic nerve-hemidiaphragm as a highly sensitive replacement assay for determination of functional botulinum toxin antibodies. Toxicon 57, 1008-1016.   DOI
69 Rheaume, C., Cai, B., Wang, J., Fernandez-Salas, E., Aoki, K., Francis, J. and Broide, R. (2015) A highly specific monoclonal antibody for botulinum neurotoxin type A-cleaved SNAP25. Toxins 7, 2354-2370.   DOI
70 Rosen, O., Feldberg, L., Yamin, T. S., Dor, E., Barnea, A., Weissberg, A. and Zichel, R. (2017) Development of a multiplex Endopep-MS assay for simultaneous detection of botulinum toxins A, B and E. Sci. Rep. 7, 14859.   DOI
71 Rosen, O., Feldberg, L., Gura, S. and Zichel, R. (2015) A new peptide substrate for enhanced botulinum neurotoxin type B detection by endopeptidase-liquid chromatography-tandem mass spectrometry/multiple reaction monitoring assay. Anal. Biochem. 473, 7-10.   DOI
72 Rust, A., Doran, C., Hart, R., Binz, T., Stickings, P., Sesardic, D., Peden, A. A. and Davletov, B. (2017) A cell line for detection of botulinum neurotoxin type B. Front. Pharmacol. 8, 796.   DOI
73 Dressler, D., Saberi, F. A. and Barbosa, E. R. (2005) Botulinum toxin: mechanisms of action. Arq. Neuropsiquiatr. 63, 180-185.   DOI