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SYNOPSIS
 

 

Toxicity is usually investigated using a set of standardized animal-based studies which, 

unfortunately, fail to detect all compounds that induce human adverse events and do not 

provide detailed mechanistic information of observed toxicity. As an alternative to 

conventional toxicology, toxicogenomics takes advantage of currently advanced 

technologies in genomics, proteomics, metabolomics, and bioinformatics to gain a 

molecular level understanding of toxicity and to enhance the predictive power of toxicity 

testing in drug development and risk/safety assessment. In addition, there has been a 

renewed interest, particularly in various government agencies, to prioritize and/or 

supplement animal testing with a battery of mechanistically informative in vitro assays. This 

article provides a brief summary of the issues, challenges and lessons learned in these 

fields and discuss the ways forward to further advance toxicology using these technologies.  
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Introduction 
 

Toxicogenomics (TGx) is an emergent discipline of toxicology 

made possible by large genomic research projects and other rapidly 

emerging biomarker technologies. It has been a robust area since 

the concept was introduced in 1999 (Nuwaysir et al. 1999) (Figure 

1). TGx began with an emphasis on assessing toxicity using gene 

expression profiling which was encouraged by the high throughput 

nature of microarray technology. Quickly, its scope was expanded 

by the inclusion of proteomic and metabolomic technologies which 

were expanding rapidly in toxicology. The potential utility and 

adoption of a growing arsenal of emerging molecular technologies 

for toxicology research were quickly realized, including Next 

Generation Sequencing (NGS) and Genome Wide Association 

Study (GWAS). Subsequently, the scope of TGx was further 

expanded with the inclusion of emerging biomarker technologies 

and bioinformatics tools to identify and characterize mechanisms of 

action of known and suspected toxicants as well as to determine 

predictive biomarkers for risk and safety assessment.     

 

More recently, there has been renewed interest to investigate a 

new generation of high throughput and high content screening 

(HTS/HCS) cell-based assays in the field of toxicology. The assays 

are designed to assess functional responses related to the specific 

mechanisms that might be important to the expression of toxicity. 

The rationale behind these assays is that the functional response of 

cells provides a better understanding of the toxicity observed in 

animals and/or humans. Since HTS/HCS cell-based assays 

simultaneously measure multiple toxicity endpoints, they might be 

able to detect different aspects related to the onset of cell stress, 

thus increasing the capacity of predicting specific toxicities.  

 

Both TGx and cell-based assays have played an important role in 

the pharmaceutical industry (e.g., target identification, detecting 

possible toxicity in the early stage of drug development and 

providing molecular-level insights leading to a mechanistic basis for 

prioritizing drug candidates). The rapid advancement and adoption 

of both disciplines in drug discovery and development also results in 

a number of opportunities and challenges for regulatory agencies. 

The US Food and Drug Administration (FDA)‟s Critical Path initiative 

has identified pharmacogenomics, including the investigation of 

toxicity, as a major opportunity to advance medical product 

development (http://www.fda.gov/ScienceResearch/SpecialTopics/ 

CriticalPathInitiative/). Similarly, the US Environmental Protection 

Agency (EPA) has been developing the ToxCast program that uses 

a battery of cell-based assays along with TGx methods to screen 

environmental chemicals (Dix et al. 2007). In 2008, the National 

Research Council Committee on Applications of Toxicogenomic 

Technologies to Predictive Toxicology and Risk Assessment 

released a report on application of TGx technologies to predictive 

toxicology and risk assessment 

(http://www.nap.edu/catalog.php?record_id=12037). They 

concluded that the application of genetics, genomics metabolomics 

and proteomics to the study of toxicology may transform the 

“current observation-based approaches into predictive Science”. 

 

This article will discuss key topics related to TGx (defined herein 

as the application of genomics to toxicity) and cell-based assays 

with emphasis on the current thinking and rationale for assessing 

their technical performance and practical use. Specifically, the 

issues and challenges associated with these topics are emphasized 

so that the reader can gain an overall perspective on the preferred 

approaches to apply the existing technology. The ways and means 

for TGx and cell-based studies are evolving rapidly, and the authors 

ardently expect that the snapshot of current methods outlined here 

will soon be refined or replaced with new innovations; paving the 

way for a paradigm shift in toxicological sciences. 

 

Toxicogenomics 
 

Differential expression 

 

One of the most common TGx approaches is to identify a list of 

genes (or proteins, metabolites if one uses proteomics or 

metabolomics, respectively) that are differentially expressed 

between two or more conditions (e.g., treated versus control).  

Often, these so-called differentially expressed genes (DEGs) are 

subsequently used to identify potentially altered pathways, 

gene/protein functions, and/or regulatory networks to understand 

the underlying mechanisms of physiological response. These types 

of descriptive TGx studies are abundant in the literature and 

continue to dominate the research in hypothesis generation. This 

type of study is hampered by the partial knowledge of pathways and 

gene annotations. Given the broad and sometimes contrary 

information available in the literature, the interpretation can be 

imprecise. Care should be taken to avoid the phenomena of looking 

for a black cat in a dark room where there is no cat yet finding one 

anyway. For example, not all changes in gene expression are 

necessarily related to a toxic effect even when a toxic dose of a 

compound is applied in the study. Careful experimental design and 

proper analysis techniques are needed in order to distinguish 

between expression patterns due to undesired toxic responses and 

those caused by just simple homeostatic adjustments and/or 

therapeutic effects (Gatzidou et al. 2007). 

 

Another challenge is associated with how the differential 

expression is statistically determined. Five years ago, the debate 

over the discrepancy in DEGs identified by different gene 

expression microarray platforms clouded the utility of this approach 

(Marshall 2004). The microarray technology, along with proteomics 

and metabolomics, allows measurement of thousands of endpoints 

in a single experiment, which enhances throughout over older 

methods but this poses a great challenge to correctly identify the 

true changes (i.e., minimize false positives) and demonstrate 

reproducibility across labs and platforms. Gene expression and 

metabolite flux is interdependent through a number of complex 

networks and pathways comprised of feedback loops, which 

challenges most classical statistical methods that often assume the 

independence of interactions such that individual expression 

constitutes a null hypothesis test. Several approaches have been 

introduced to deal with this difficulty (Benjamini et al. 2001; Tusher 

et al. 2001; Reiner et al. 2003). In reality, the gene-gene 

interdependency can not be accurately estimated. Thus, all the 

methods either over- or under-estimate the degree of 

interdependency of the genes, which results in a biased statistical 

estimation. This likely contributes to observations of poor 
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Figure 1. Number of Pubmed publications indexed by keyword „toxi
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concordance in differential gene expression across platforms and 

laboratories. With these concerns in mind, we initiated the FDA-led, 

community wide MicroArray Quality Control (MAQC) project that 

investigated these issues. Our findings suggested that a 

reproducible list of DEGs across platforms and laboratories for the 

same biological samples is more likely to be obtained using fold 

change ranking together with a non-stringent p-value cutoff (Shi et 

al. 2006).            

 

Utility of Toxicogenomics Databases 

 

Another actively investigated field, especially in the earliest days 

of TGx, was the comparative TGx approach which assumes 

compounds exhibiting similar gene expression profiles are likely 

eliciting analogous toxicological responses and vice versa. The 

success of the comparative TGx study is bolstered if one has 

access to a relatively large TGx database containing gene 

expression data of well-studied and understood toxicants (e.g., 

genotoxic carcinogens, non-genotoxic carcinogens, PPAR- agonists, 

lung tumor carcinogens) and non-toxic compounds. Such 

databases can be useful in identifying molecular profiles which 

discriminate each category of toxicants. Gene expression changes 

caused by an unknown compound can then be compared with the 

profiles in the database using pattern discovery methods. With the 

assumption that compounds with similar toxicity mechanisms and/or 

mode of action will induce related alterations in gene expression 

profiles, hypotheses can be developed about the mechanisms of 

action of unknown compounds (Nuwaysir et al. 1999; Gatzidou et al. 

2007).  

 

There exists a large literature base for comparative TGx studies. 

Waring et al. (Waring et al. 2001; Waring et al. 2001), for example, 

generated gene expression profiles for 15 known hepatotoxicants 

using both in vitro and in vivo experiments, and then confirmed that 

toxins with similar mechanisms of action exhibited expression 

patterns that clustered together. However, in the public domain it 

appears that the activity in this field has decreased lately which 

might be due to the more routine use of toxicogenomics within 

pharmaceutical companies versus active research. While 

developing a reference TGx database under a well controlled 

experiment environment is useful in many ways, this can be 

extremely expensive and thus prohibitive to becoming a sustainable 

business model. For example, ToxExpress®  

(http://www.genelogic.com/) and DrugMatrix®  

(http://www.iconixbiosciences.com/) are two of the most 

comprehensive reference databases available, developed by Gene 

Logic and Iconix, respectively. However, both companies have been 

purchased by another entity that offer additional products and 

services suggesting the business model of providing 

toxicogenomics databases and services alone will not sustain a 

company. It is our opinion that the need to further develop 

comprehensive reference databases is a huge undertaking and may 

be better developed by a government supported consortium effort 

as suggested by the National Research Council‟s report cited above. 

Meanwhile, the ever growing data in GEO and ArrayExpress might 

provide new opportunities for comparative TGx studies and may 

also inspire novel statistical and meta-analysis methodologies for 

integrating the diverse data in these databases (Butte and Kohane 

2006). 

 

Molecular signatures and predictive toxicology 

 

TGx-based predictive toxicology aims to identify molecular 

signatures that can be used to make inferential predictions that a 

discrete toxicological endpoint will manifest from a specific toxic 

exposure. As depicted in Figure 2, signature identification usually 

starts with a set of gene expression data (called the training set) 

from two or more distinct endpoint groups (e.g., genotoxic 

carcinogens versus non-genotoxic carcinogens). Next, a machine 

learning method is used to correlate gene expression patterns with 

toxicity classes to develop a predictive model (i.e., classifier or 

molecular signature). This area of study is becoming more 

affordable as the price for microarrays continues to decrease 

making larger experiments feasible. The focus is mainly on 

developing TGx signatures based on the short term in vivo or in 

vitro assays that predict the toxic effects that are normally measured 

in long-term and expensive bioassays. A study by Thomas et al., for 

example, used a short term TGx study to develop a gene signature 

for predicting whether a compound would induce lung tumors 

(Thomas et al. 2007). It this signature is validated, it could be an 

alternative to the traditionally-used and expensive two year rodent 

bioassays.  

 

It has become relatively easy to develop a statistically sound 

model (i.e., molecular signature) using training data. The current 

challenge is in developing a model with the capability to predict 

accurately the classification of untested toxicants, i.e., a model that is 

not overfit. The authors specifically advocate an iterative approach to 

enhance the confidence of the models through alternating between 

incorporating new data in the models and using the models to 

choose new compounds to assay. As depicted in Figure 3, the 

process starts with initial sets of compounds for model development. 

Next, the preliminary models are used prospectively to define a set 

of compounds that may further improve the model‟s robustness and 

predictive capability. These new compounds are assayed, and the 

data are then used to challenge and refine the models. Several 

benefits accrue from the integration of the experimental and 

modeling efforts. For example, immediate feedback can be given to 

guide chemical compound selection. As the models evolve, the 

scientists can select the compounds for subsequent testing, based 

on considerations of known toxicity potential, chemical structural 

diversity and dose range. Each new assay data point from the lab 

becomes a challenge to the evolving model; the result is either 

further confirmation of its validity or identification of a limitation.  

Failure of the model also provides important information, such as 

identification of the need for new data based on rational limitations 

of the model. Regardless of the cause for the model failure, a 

research hypothesis is spawned with each iteration, which should 

lead to new data and/or an improved training set, and an 
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Figure 2. Signature development process contains two steps.  

During the training stage, a machine learning method is used to determine a toxic 

signature that discriminates the treated samples from the controls, with an internal 

validation process often included in this step. In the validation stage, the signature is 

challenged by “unknown” samples that have not been utilized during the training 

stage.  

http://www.genelogic.com/
http://www.iconixbiosciences.com/products/products_drugmatrix.html


Prospect 
 

 
Interdisciplinary Bio Central Open Access, Open Review Journal 

 
 

 
www.ibc7.org                                                                        Volume 1 | Number 3 | Article no. 0010 

Page 4 of 5 

improvement in understanding the mechanism. The recently  

completed second phase of the MAQC project emphasizes this 

approach and the lessons learned have been summarized in 

several manuscripts that are, at the time of this writing, being 

reviewed by Nature Biotechnology 

(http://www.fda.gov/ScienceResearch/BioinformaticsTools/Microarra

yQualityControlProject/). 

  

 
Cell-based assays – A renewed interest in 
toxicology 

 

Cell-based assays are still being used actively for lead screening 

and target identification in drug discovery. However, their utility in 

toxicology has been questionable and their potential not fully 

realized until recently. The reasons, in part, are that cellular 

phenotypes often correlate poorly with animal and human pathology. 

For example, most cell-based ADME/Tox assays currently used in 

drug discovery rely on engineered cells that often provide results 

with relatively poor prediction of the responses in living systems. 

The renewed interest of cell-based assays in toxicology is largely 

due to the current advance in sensitive detection, automated fluid 

handling and imaging, which enable simultaneously quantitative and 

efficient analysis of different mechanisms involved in cytotoxicity.  

Given the fact that in vitro cellular phenotypes correlate poorly with 

those found in animal and human pathologies, the current strategy 

is focused on combining functional responses of multiple cell types 

in vitro with toxicities seen in animals and/or humans using machine 

learning approaches. 

 

For example, the EPA ToxCast program intends to screen and 

prioritize a large number of environmental chemicals (mainly 

industrial agents and pesticides) using a battery of cell-based 

assays with the option of including omics assays (Dix et al. 2007).  

The initial step is to use sets of chemical compounds (~1,000) that 

have extensive animal toxicity data to develop and verify toxicity 

signatures (i.e., patterns of in vitro assay data correlated with 

specific toxicity endpoints). Phase I of ToxCast (320 chemicals) 

included nine in vitro assays measuring a total of 524 features of 

cellular phenotypes. In the first ToxCast Summit 

(http://www.epa.gov/NCCT/toxcast/summit.html), the preliminary 

results of these features as signatures for predicting various in vivo 

animal toxicity endpoints were discussed. Currently, the Phase II 

chemical set is being compiled and will include on the order of 100 

human drugs with documented human toxicities. 

 

The NIH Chemical Genomics Center (NCGC) in collaboration 

with National Toxicology Program (NTP) and EPA launched the 

Tox21 program (http://www.alttox.org/ttrc/overarching-

challenges/way-forward/austin-kavlock-tice). The program combines  

the industrial-scale quantitative HTS and informatics platform at the 

NCGC with the animal toxicity expertise of the NTP and the 

computational toxicology expertise of the EPA (Collins et al. 2008) 

to develop a set of in vitro assays that can be used to generate 

toxicity signatures to both better predict human toxicity and reduce 

the need for animal testing. The compound library to be assayed in 

the Tox21 assay panel will contain all drugs approved by FDA    

(including those approved and subsequently withdrawn), as well as 

the majority of drugs approved by regulatory agencies in the EU, 

Canada, and Japan. This compilation (the NCGC Pharmaceutical 

Collection) represents an unprecedented resource for systematically 

studying the in vitro correlates of various toxicities. A subset of 3000 

of these compounds has been screened across approximately 50 

assays to date, covering a range of phenotypes and molecular 

pathways and targets. Crucial for conclusions about toxicity, 

screening in Tox21 is not performed in the usual single-

concentration format.  Rather, all screens in the Tox21 program are 

performed at 15 different concentrations from ~1 nM – 100 uM, 

producing concentration-response relationships for all compounds 

in all assays. Screening of the Tox21 library is expected to continue 

for several years with at least 2 new screens added per month, and 

the Tox21 library is expected to grow beyond 10,000 chemicals as 

procedures are streamlined and the screening and informatics 

capacity of Tox21 grows.  

 

We have initiated a Liver Toxicity Knowledge Base (LTKB) project 

at the FDA. The project aims to provide focused knowledge and 

bioinformatics tools for liver toxicity. Some 200 compounds (most 

being drugs) were studied. Both rat primary hepatocytes and 

HepG2 cells were used for in vitro toxicant-induced evaluation, 

involving four time and eight dose points. Cellular alterations were 

assessed using multiple pathway-related endpoint measurements 

from the assay including apoptosis, peroxisomal proliferation, 

phospholipidosis, mitochondrial function, and DNA damage. In 

addition, the DNA microarray experiments using the Affymetrix rat 

chip will also be conducted for these compounds using rat primary 

hepatocytes to generate gene expression data along with targeted 

proteomics and metabolomics studies.  

 

 

A way forward 
 

The current challenges as well as opportunities in TGx lie in the 

integration of multi-omics data to address toxicity at the systems 

level; i.e., integration at the gene, protein and metabolite levels to 
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Figure 3. An overview of the iterative process for predictive toxicology. The process starts with initial sets of data for model development, which is 

subsequently challenged with both internal and external validations. Next, the preliminary models are used prospectively to define a set of new compounds (i.e., toxicants) 

for assay to challenge and refine the models. 
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assist in the identification of biological context as the perturbed 

pathways or functions are in the center stage of systems toxicology.  

In the absence of data integration, lists of genes, proteins, and 

metabolic products that are differentially expressed between sample 

groups are only lists, providing one level of information regarding 

biological cause and context. Integrating different omics data types 

provides the ability to elucidate biological context such as the 

perturbed functions, signaling pathway components, transcription-

factor mechanisms of action, gene regulatory networks, and post-

translational modifications, among many others. Moreover, when 

different data types lead to the same hypothesis (data triangulation) 

with weight of evidence, both reliability and validity are enhanced. 

 

Regarding the HTS/HCS cell-based assays, while the potential of 

this approach is apparent, its utility needs to be further validated.  

Several disparities clearly exist between the physiological 

environments of cells, particularly transformed cells, compared to 

those found in tissues in situ. Thus, it would be preferable to use 

cells freshly derived from tissue, for example, primary hepatocytes 

as they more closely resemble the phenotypes found in the animal 

and human liver. However, a major limitation of any primary cell for 

HTS/HCS is the low throughput nature of their isolation and 

potential experiment to experiment variability. One prospective area 

is to use human stem cells that have the potential to differentiate in 

vitro into various specialized cell types for toxicity study, although 

many practical considerations still remain in this field such as 

developing the knowledge to differentiate these cells into adult-type 

hepatocytes. In summary, the continual advances in miniaturization 

(e.g., enabling the use of very small amounts of compound), 

imaging (e.g., moving from current fixed cell endpoint assay to live 

cell readouts), sample automation, and stem cell research will 

enhance our capability for the early identification of toxicity. 

 

Huge efforts have been focused on TGx and cell-based assays 

for the past ten years with the hope of discovering novel insights 

into mechanisms of toxicity and the identification of biomarkers that 

can be used to identify such adverse events in animals and humans. 

As a result, a large number of TGx studies have been performed 

and some of the resulting data have been deposited in the public 

domain. We are living in an exciting, data rich era, which calls for 

innovative bioinformatic approaches to utilize this ever growing 

amount of information through meta-analysis and text mining for 

knowledge base development. Data standards and ontology 

development/maturation will play an increasing role to guide data 

curation, mining and analysis, which will help the development of a 

content-centric knowledge base. Such a knowledge base will spawn 

hypotheses to develop new studies to address the current gaps and 

lead to further improvements in research. New data and information 

generated from these studies will further enrich the knowledge base. 

Such knowledge bases could also be important for the regulatory 

agencies for use as a first tier of information to determine the need 

for additional studies from the sponsors to support any safety 

concerns. Cumulatively, current and future studies will address not 

only the adverse events for drugs and environmental chemicals, but 

also show promise to be able to lead new discovery in the 

prevention of such adverse events.   

 

 

References   

 

Benjamini, Y., D. Drai, et al. (2001). Controlling the false discovery 

rate in behavior genetics research. Behav. Brain Res. 125(1-2), 

279-84. 

Butte, A. J. and I. S. Kohane (2006). Creation and implications of a 

phenome-genome network. Nat. Biotechnol. 24(1), 55-62. 

Collins, F. S., G. M. Gray, et al. (2008). Toxicology. Transforming 

environmental health protection. Science 319(5865), 906-7. 

Dix, D. J., K. A. Houck, et al. (2007). The ToxCast program for 

prioritizing toxicity testing of environmental chemicals. Toxicol. 

Sci. 95(1), 5-12. 

Gatzidou, E. T., A. N. Zira, et al. (2007). Toxicogenomics: a pivotal 

piece in the puzzle of toxicological research. J. Appl. Toxicol. 

27(4), 302-9. 

Marshall, E. (2004). Getting the noise out of gene arrays. Science 

306(5696), 630-1. 

Nuwaysir, E. F., M. Bittner, et al. (1999). Microarrays and toxicology: 

the advent of toxicogenomics. Mol. Carcinog. 24(3), 153-9. 

Reiner, A., D. Yekutieli, et al. (2003). Identifying differentially 

expressed genes using false discovery rate controlling 

procedures. Bioinformatics 19(3), 368-75. 

Shi, L., L. H. Reid, et al. (2006). The MicroArray Quality Control 

(MAQC) project shows inter- and intraplatform reproducibility of 

gene expression measurements. Nat. Biotechnol. 24(9), 1151-61. 

Thomas, R. S., L. Pluta, et al. (2007). Application of genomic 

biomarkers to predict increased lung tumor incidence in 2-year 

rodent cancer bioassays. Toxicol. Sci. 97(1), 55-64. 

Tusher, V. G., R. Tibshirani, et al. (2001). Significance analysis of 

microarrays applied to the ionizing radiation response. Proc. Natl. 

Acad. Sci. USA 98(9), 5116-21. 

Waring, J. F., R. Ciurlionis, et al. (2001). Microarray analysis of 

hepatotoxins in vitro reveals a correlation between gene 

expression profiles and mechanisms of toxicity. Toxicol. Lett. 

120(1-3), 359-68. 

Waring, J. F., R. A. Jolly, et al. (2001). Clustering of hepatotoxins 

based on mechanism of toxicity using gene expression profiles. 

Toxicol. Appl. Pharmacol. 175(1), 28-42. 

 


