• Title/Summary/Keyword: Alternative protein

Search Result 612, Processing Time 0.034 seconds

Increased Amino Acid Absorption Mediated by Lacticaseibacillus rhamnosus IDCC 3201 in High-Protein Diet-Fed Mice

  • Hayoung Kim;Jungyeon Kim;Minjee Lee;Hyeon Ji Jeon;Jin Seok Moon;Young Hoon Jung;Jungwoo Yang
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.4
    • /
    • pp.511-518
    • /
    • 2023
  • The use of dietary protein products has increased with interests in health promotion, and demand for sports supplements. Among various protein sources, milk protein is one of the most widely employed, given its economic and nutritional advantages. However, recent studies have revealed that milk protein undergoes fecal excretion without complete hydrolysis in the intestines. To increase protein digestibility, heating and drying were implemented; however, these methods reduce protein quality by causing denaturation, aggregation, and chemical modification of amino acids. In the present study, we observed that Lacticaseibacillus rhamnosus IDCC 3201 actively secretes proteases that hydrolyze milk proteins. Furthermore, we showed that co-administration of milk proteins and L. rhamnosus IDCC 3201 increased the digestibility and plasma concentrations of amino acids in a high-protein diet mouse model. Thus, food supplementation of L. rhamnosus IDCC 3201 can be an alternative strategy to increase the digestibility of proteins.

Enhancing Protein Content in Wild-Type Saccharomyces cerevisiae via Random Mutagenesis and Optimized Fermentation Conditions

  • Sang-Hun Do;Tae-Gi Lee;Sun-Ki Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.9
    • /
    • pp.1912-1918
    • /
    • 2024
  • Single-cell protein (SCP) derived from microorganisms is widely recognized as a viable alternative protein source for the future. Nevertheless, the commercialization of yeast-based SCP is hampered by its relatively low protein content. Therefore, this study aimed to enhance the protein content of Saccharomyces cerevisiae via random mutagenesis. To achieve this, S. cerevisiae KCCM 51811, which exhibited the highest protein concentration among 20 edible S. cerevisiae strains, was selected as a chassis strain. Subsequently, a KCCM 51811 mutant library was constructed (through UV irradiation) and screened to isolate mutants exhibiting high protein content and/or concentration. Among the 174 mutant strains studied, the #126 mutant exhibited a remarkable 43% and 36% higher protein content and concentration, respectively, compared to the parental strain. Finally, the #126 mutant was cultured in a fed-batch system using molasses and corn-steep liquor, resulting in a protein concentration of 21.6 g/l in 100 h, which was 18% higher than that produced by the parental strain. These findings underscore the potential of our approach for the cost-effective production of food-grade SCP.

New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis

  • Yoon, Gyeong Mee
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.597-603
    • /
    • 2015
  • Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.

Antioxidative and Anti-inflammatory Effect of Ethanol Extract from Duchesnea chrysantha (사매 에탄올 추출물의 항산화 및 항염증 효과)

  • Lee, Deok-Jae;Jeon, In-Hwa;Kim, Hyeon-Soo;Cho, Il-Young;Jang, Seon-Il
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.1
    • /
    • pp.59-66
    • /
    • 2012
  • Oxidative stress has been implicated in cutaneous damage in various inflammatory skin diseases, including atopic dermatitis. The present study was undertaken to investigate the antioxidative and anti-inflammatory activities of the extract of Duchesnea chrysantha (DCE). DEC was prepared by extracting with 80% ethanol. Total flavonoids and polyphenols were measured by a colorimetric assay. The free radical scavenging activity of the extract was analyzed by the DPPH (1,1-diphenyl-2-picryl hydrazyl), ABTS (2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) and Griess reagent assay. An oxidative product of nitric oxide (NO), was measured in the culture medium by the Griess reaction. The level of prostaglandin $E_2$ ($PGE_2$) was measured by enzyme-linked immunosorbent assay. The expressions of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were measured by Western blot analysis. Total flavonoid and polyphenol contents of DCE were included $24.73{\pm}0.45$ and $178.77{\pm}2.65$, respectively. DCE significantly increased electron donating ability (DPPH), nitrite scavenging (NO) and ABTS reducing activity in dose dependant. We investigated the anti-inflammatory effects of DCE on lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. DCE significantly suppressed NO and prdstaglandin $E_2$ ($PGE_2$) in dose dependant. Furthermore, the levels of iNOS and COX-2 protein expressions were markedly suppressed by the treatment with DCE in a dose dependent manner. These results suggest that DEC may has value as natural product with its high quality functional components, antioxidative and anti-inflammatory activities.

Alternative splicing variant of NRP/B promotes tumorigenesis of gastric cancer

  • Kim, Aram;Mok, Bo Ram;Hahn, Soojung;Yoo, Jongman;Kim, Dong Hyun;Kim, Tae-Aug
    • BMB Reports
    • /
    • v.55 no.7
    • /
    • pp.348-353
    • /
    • 2022
  • Gastrointestinal cancer is associated with a high mortality rate. Here, we report that the splice variant of NRP/B contributes to tumorigenic activity in highly malignant gastric cancer through dissociation from the tumor repressor, HDAC5. NRP/B mRNA expression is significantly higher in the human gastric cancer tissues than in the normal tissues. Further, high levels of both the NRP/B splice variant and Lgr5, but not the full-length protein, are found in highly tumorigenic gastric tumor cells, but not in non-tumorigenic cells. The loss of NRP/B markedly inhibits cell migration and invasion, which reduces tumor formation in vivo. Importantly, the inhibition of alternative splicing increases the levels of NRP/B-1 mRNA and protein in AGS cells. The ectopic expression of full-length NRP/B exhibits tumor-suppressive activity, whereas NRP/B-2 induces the noninvasive human gastric cancer cells tumorigenesis. The splice variant NRP/B-2 which loses the capacity to interact with tumor repressors promoted oncogenic activity, suggesting that the BTB/POZ domain in the N-terminus has a crucial role in the suppression of gastric cancer. Therefore, the regulation of alternative splicing of the NRP/B gene is a potential novel target for the treatment of gastrointestinal cancer.

Nutritional evaluation of new alternative types of dog foods including raw and cooked homemade-style diets

  • Boyeon Choi;San Kim;Goo Jang
    • Journal of Veterinary Science
    • /
    • v.24 no.5
    • /
    • pp.63.1-63.9
    • /
    • 2023
  • Background: New alternative types of pet foods such as raw and cooked homemadestyle diets containing human food ingredients have been introduced due to a trend of pet humanization and diversification of consumer needs. Objectives: To evaluate nutritional adequacy of new alternative types of dog foods containing human food ingredients as maintenance diets for dogs. Methods: Eleven homemade-style foods for adult dogs were purchased from online channel in Korea and analyzed to evaluate nutritional adequacy for adult dogs. Nutrients analyzed included crude protein, amino acids, crude fat, fatty acids, and minerals. Results: Crude protein and amino acids in all products satisfied Association of American Feed Control Officials (AAFCO) requirements. Crude fat in one of 11 products did not meet AAFCO requirements. The most deficient minerals were selenium (10 of 11, 90.9%), copper (five of 11, 45.5%), zinc (five of 11, 45.5%), potassium (three of 11, 27.3%), calcium (three of 11, 27.3%), iron (two of 11, 18.2%), and magnesium (one of 11, 9.1%). Six products were not in the range of the recommended Ca:P ratio in AAFCO dog food maintenance nutrient profiles. Conclusions: This study performed nutritional evaluation of raw and cooked homemadestyle foods as maintenance diets for adult dogs. Some nutritional inadequacies were observed including some minerals, Ca:P ratio, and omega-6:omega-3 fatty acid ratio, although three products (26.2%) satisfied the AAFCO standard except selenium. Overall, the data suggest a need for accurate nutritional adequacy statement for consumers based on proper methods to validate the formula.

Quality characteristics of plant-based whipped cream with ultrasonicated pea protein

  • Insun Kim;Kwang-Deog Moon
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.64-79
    • /
    • 2024
  • The rise in popularity of vegetarian and plant-based diets has led to extensive research into plant-based whipped creams. Whipped cream is an oil-in-water emulsion that creates foam through whipping, stabilizing the foam with proteins and fats. Pea protein is an excellent emulsifier and foaming agent among plant-based proteins, but its application in whipped cream is currently limited. The objective of this study was to investigate the quality characteristics of plant-based whipped cream made with ultrasonicated pea protein. The whipped creams were evaluated based on their quality characteristics. A commercially available dairy whipped cream (CON) was used as a control. Plant-based creams were evaluated using pea protein solution, cocoa butter, and canola oil to produce un-ultrasonicated pea protein whipped cream (PP) and ultrasonicated pea protein whipped cream (UPP) at 360 W for 6 min. UPP significantly reduced whipping time and foam drainage compared with CON and PP, resulting in significantly increased overrun, fat destabilization, and hardness. Optical microscopy showed that UPP had smaller fat globules and bubble size than PP. The fat globules of UPP and CON were mostly below 5 ㎛, whereas those of PP were distributed at 5-20 ㎛. Finally, ultrasonication significantly improved the overrun, foam drainage, fat destabilization, and hardness of UPP, which are significant quality characteristics of whipped creams. Therefore, ultrasonicated plant-based pea protein whipped cream is believed to be a viable alternative to dairy whipped cream.

Arabinoxylan Rice Bran and Endurance Exercise Training on the TLR4 Signaling-mediated Protein Expression in LPS-treated Rats (유색미 겨 아라비녹실레인과 지구성 운동트레이닝이 LPS 처치된 흰쥐의 TLR4 Signaling 단백질 발현에 미치는 영향)

  • Son, Hee-Jeong
    • The Korean Journal of Food And Nutrition
    • /
    • v.27 no.6
    • /
    • pp.1141-1146
    • /
    • 2014
  • The purpose of this study is to investigate the effects of arabinoxylan rice bran and endurance exercise training on TLR4 mediated protein expression in LPS-treated rats. The results showed that TLR4 as an important protein in the inflammatory response against lipopolysaccharide was shown to be significantly lower in both arabinoxylan supplement with exercise group and exercise group, thus the arabinoxylan rice bran had a higher inhibitory activity than arabinoxylan supplement group. However, $NF-{\kappa}B$ and MyD88 protein expression was not changed in arabinoxylan supplement with exercise training group, whereas $NF-{\kappa}B$ significantly decreased in 4 weeks of exercise training group. These results suggest that the supplement of arabinoxylan rice bran with exercise is likely to contribute to inflammation response and the arabinoxylan rice bran can be used as a possible safe alternative to the immunotherapeutic intervention.

Expression of Enhanced Green Fluorescent Protein from Stably Transformed Drosophila melanogaster S2 Cells

  • Lee, Jong-Min;Park, Jong-Hwa;Chung, In-Sik
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.115-118
    • /
    • 2000
  • Recombinant plasmids harboring a heterologous gene coding for the enhanced green fluorescent protein (EGFP) were transfected and expressed in Drosophila melanogaster S2 cells. A stable transformation of polyclonal cell populations expressing EGFP were isolated after 4 weeks of selection with hygromycin B. The recombinant EFGP expressed in transformed S2 cells consisted of a molecular weight of 27 kDa. EGFP expression was also confirmed by fluorometric measurement. The maximum EGFP concentration was about 9.3 mg/I. The present findings demonstrate not only the successful stable expression of EGFP in Drosophuila was about 9.3 mgI. The present findings demonstrate not only the successful stable expression of EGFP in Drosophila S2 cells, but also the use of EGFP as a reporter to analyze gene expression, with its potential of a Drosophila cell expression system for recombinant protein production being an alternative to a baculovirus-insect cell expression system.

  • PDF

The Study on the Effective Expression Strategy for Recombinant Protein Production with Pichia pastoris and Hansenula polymorpha (Hansenula polymorpha와 Pichia pastoris의 비교를 통한 회분식 배양에서의 효과적인 재조합단백질 발현방법에 관한 연구)

  • Gang, Hwan-Gu;Kim, Jae-Ho;Jeon, Hui-Jin
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.482-489
    • /
    • 1999
  • As host for the production of eucaryotic heterologous proteins, methylotrophic yeast Pichia pastoris and Hansenula polymorpha are the most highly developed of a small group of alternative yeast species chosen for their perceived advantages. This paper describes the method to enhance the recombinant protein productivity with P. pastoris and H. Plymorpha. In these experiments, the effects of methanol induction timing, induction method, pH, culture temperature and kinds of nitrogen sources on foreign protein production were tested with P. pastoris and compared with H. polymorpha.. In addition, optimum methanol concentration as inducer and the effects of carbon sources on AOX1 or MOX promoter repression and secretion efficiency were also studied in both cases.

  • PDF