Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0152

New Insights into the Protein Turnover Regulation in Ethylene Biosynthesis  

Yoon, Gyeong Mee (Department of Botany and Plant Pathology, Purdue University)
Abstract
Biosynthesis of the phytohormone ethylene is under tight regulation to satisfy the need for appropriate levels of ethylene in plants in response to exogenous and endogenous stimuli. The enzyme 1-aminocyclopropane-1-carboxylic acid synthase (ACS), which catalyzes the rate-limiting step of ethylene biosynthesis, plays a central role to regulate ethylene production through changes in ACS gene expression levels and the activity of the enzyme. Together with molecular genetic studies suggesting the roles of post-translational modification of the ACS, newly emerging evidence strongly suggests that the regulation of ACS protein stability is an alternative mechanism that controls ethylene production, in addition to the transcriptional regulation of ACS genes. In this review, recent new insight into the regulation of ACS protein turnover is highlighted, with a special focus on the roles of phosphorylation, ubiquitination, and novel components that regulate the turnover of ACS proteins. The prospect of cross-talk between ethylene biosynthesis and other signaling pathways to control turnover of the ACS protein is also considered.
Keywords
14-3-3; ACS; ethylene; phosphorylation; protein turnover;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Guzman, P., and Ecker, J.R. (1990). Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2, 513-523.   DOI   ScienceOn
2 Hansen, M., Chae, H.S., and Kieber, J.J. (2009). Regulation of ACS protein stability by cytokinin and brassinosteroid. Plant J. 57, 606-614.   DOI   ScienceOn
3 Harpaz-Saad, S., Yoon, G.M., Matto, A.K., and Kieber, J.J. (2012). The formation of ACC and competition between polyamines and ethylene for SAM. Annu. Plant Rev. 44, 53-81.
4 Hernandez Sebastia, C., Hardin, S.C., Clouse, S.D., Kieber, J.J., and Huber, S.C. (2004). Identification of a new motif for CDPK phosphorylation in vitro that suggests ACC synthase may be a CDPK substrate. Arch. Biochem. Biophys. 428, 81-91.   DOI   ScienceOn
5 Ho, M.S., Ou, C., Chan, Y.R., Chien, C.T., and Pi, H. (2008). The utility F-box for protein destruction. Cell. Mol. Life Sci. 65, 1977-2000.   DOI
6 Holt, L.J., Tuch, B.B., Villen, J., Johnson, A.D., Gygi, S.P., and Morgan, D.O. (2009). Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325, 1682-1686.   DOI   ScienceOn
7 Joo, S., Liu, Y., Lueth, A., and Zhang, S. (2008). MAPK phosphorylation-induced stabilization of ACS6 protein is mediated by the non-catalytic C-terminal domain, which also contains the cis-determinant for rapid degradation by the 26S proteasome pathway. Plant J. 54, 129-140.   DOI   ScienceOn
8 Kamiyoshihara, Y., Iwata, M., Fukaya, T., Tatsuki, M., and Mori, H. (2010). Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J. 64, 140-150.
9 Kende, H. (1993). Ethylene biosynthesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 283-307.   DOI
10 Kim, C.Y., Liu, Y., Thorne, E.T., Yang, H., Fukushige, H., Gassmann, W., Hildebrand, D., Sharp, R.E., and Zhang, S. (2003). Activation of a stress-responsive mitogen-activated protein kinase cascade induces the biosynthesis of ethylene in plants. Plant Cell 15, 2707-2718.   DOI   ScienceOn
11 Knight, L.I., Rose, R.C., and Crocker, W. (1910). Effects of various gases and vapors upon etiolated seedlings of the sweet pea. Science 31, 635-636.
12 Lara, I., and Vendrell, M. (2000). Development of ethylenesynthesizing capacity in preclimacteric apples: interaction between abscisic acid and ethylene. J. Am. Soc. Hortic. Sci. 125, 505-512.
13 Larsen, P.B., and Cancel, J.D. (2004). A recessive mutation in the RUB1-conjugating enzyme, RCE1, reveals a requirement for RUB modification for control of ethylene biosynthesis and proper induction of basic chitinase and PDF1.2 in Arabidopsis. Plant J. 38, 626-638.   DOI   ScienceOn
14 Li, C.H., Wang, G., Zhao, J.L., Zhang, L.Q., Ai, L.F., Han, Y.F., Sun, D.Y., Zhang, S.W., and Sun, Y. (2014). The Receptor-Like Kinase SIT1 Mediates Salt Sensitivity by Activating MAPK3/6 and regulating ethylene homeostasis in rice. Plant Cell 26, 2538-2553.   DOI   ScienceOn
15 Lieberman, M., and Mapson, L.W. (1964). Genesis and biogenesis of ethylene. Nature 204, 343-345.   DOI
16 Liu, Y., and Zhang, S. (2004). Phosphorylation of 1-aminocyclopropane-1-carboxylic acid synthase by MPK6, a stressresponsive mitogen-activated protein kinase, induces ethylene biosynthesis in Arabidopsis. Plant Cell 16, 3386-3399.   DOI   ScienceOn
17 Liu, W., Xu, Z.H., Luo, D., and Xue, H.W. (2003). Roles of OsCKI1, a rice casein kinase I, in root development and plant hormone sensitivity. Plant J. 36, 189-202.   DOI   ScienceOn
18 Mayfield, J.D., Folta, K.M., Paul, A.L., and Ferl, R.J. (2007). The 14-3-3 Proteins mu and upsilon influence transition to flowering and early phytochrome response. Plant Physiol. 145, 1692-1702.   DOI   ScienceOn
19 Lyzenga, W.J., Booth, J.K., and Stone, S.L. (2012). The Arabidopsis RING-type E3 ligase XBAT32 mediates the proteasomal degradation of the ethylene biosynthetic enzyme, 1-aminocyclopropane-1-carboxylate synthase 7. Plant J. 71, 23-34.   DOI   ScienceOn
20 Mattoo, A.K., and Suttle, J.C. (1991). The Plant Hormone Ethylene. (Boca Raton: CRC Press).
21 McClellan, C.A., and Chang, C.L. (2008). The role of protein turnover in ethylene biosynthesis and response. Plant Sci. 175, 24-31.   DOI   ScienceOn
22 Murr, D.P., and Yang, S.F. (1975). Conversion of 5-methylthioadenosine to methionine by apple tissue. Phytochemistry 14, 1291-1292.   DOI   ScienceOn
23 Neljubov, D. (1901). Uber die horizontale Nutation der Stengel von Pisum sativum und einiger Anderer. Pflanzen Beih. Bot. Zentralb 10, 128-139.
24 Nodzon, L.A., Xu, W.H., Wang, Y., Pi, L.Y., Chakrabarty, P.K., and Song, W.Y. (2004). The ubiquitin ligase XBAT32 regulates lateral root development in Arabidopsis. Plant J. 40, 996-1006.   DOI   ScienceOn
25 Paul, A.L., Folta, K.M., and Ferl, R.J. (2008). 14-3-3 proteins, red light and photoperiodic flowering: a point of connection? Plant Signal. Behav. 3, 511-515.   DOI
26 Paul, A.L., Denison, F.C., Schultz, E.R., Zupanska, A.K., and Ferl, R.J. (2012). 14-3-3 phosphoprotein interaction networks-does isoform diversity present functional interaction specification? Front. Plant Sci. 3, 190.
27 Sauter, M., Moffatt, B., Saechao, M.C., Hell, R., and Wirtz, M. (2013). Methionine salvage and Sadenosylmethionine: essential links between sulfur, ethylene and polyamine biosynthesis. Biochem. J. 451, 145-154.   DOI
28 Pintard, L., Willems, A., and Peter, M. (2004). Cullin-based ubiquitin ligases: Cul3-BTB complexes join the family. EMBO J. 23, 1681-1687.   DOI   ScienceOn
29 Prasad, M.E., Schofield, A., Lyzenga, W., Liu, H., and Stone, S.L. (2010). Arabidopsis RING E3 ligase XBAT32 regulates lateral root production through its role in ethylene biosynthesis. Plant Physiol. 153, 1587-1596.   DOI   ScienceOn
30 Purwestri, Y.A., Ogaki, Y., Tamaki, S., Tsuji, H., and Shimamoto, K. (2009). The 14-3-3 protein GF14c acts as a negative regulator of flowering in rice by interacting with the florigen Hd3a. Plant Cell Physiol. 50, 429-438.   DOI   ScienceOn
31 Skottke, K.R., Yoon, G.M., Kieber, J.J., and DeLong, A. (2011). Protein phosphatase 2A controls ethylene biosynthesis by differentially regulating the turnover of ACC synthase isoforms. PLoS Genet. 7, e1001370.   DOI   ScienceOn
32 Su, C.H., Zhao, R., Zhang, F., Qu, C., Chen, B., Feng, Y.H., Phan, L., Chen, J., Wang, H., Wang, H., et al. (2011). 14-3-3sigma exerts tumor-suppressor activity mediated by regulation of COP1 stability. Cancer Res. 71, 884-894.   DOI
33 Tan, S.T., and Xue, H.W. (2014). Casein kinase 1 regulates ethylene synthesis by phosphorylating and promoting the turnover of ACS5. Cell Rep. 9, 1692-1702.   DOI   ScienceOn
34 Tan, S.T., Dai, C., Liu, H.T., and Xue, H.W. (2013). Arabidopsis casein kinase1 proteins CK1.3 and CK1.4 phosphorylate cryptochrome2 to regulate blue light signaling. Plant Cell 25, 2618-2632.   DOI   ScienceOn
35 Van de Poel, B., and Van Der Straeten, D. (2014). 1-aminocyclopropane-1-carboxylic acid (ACC) in plants: more than just the precursor of ethylene! Front. Plant Sci. 5, 640.
36 Tari, I., and Nagy, M. (1996). Abscisic acid and ethrel abolish the inhibition of adventitious root formation of pacrobutrazol-treated bean primary leaf cuttings. Biol. Plant. 38, 369-375.   DOI
37 Tseng, T.S., Whippo, C., Hangarter, R.P., and Briggs, W.R. (2012). The role of a 14-3-3 protein in stomatal opening mediated by PHOT2 in Arabidopsis. Plant Cell 24, 1114-1126.   DOI   ScienceOn
38 Tsuchisaka, A., and Theologis, A. (2004). Unique and overlapping expression patterns among the Arabidopsis 1-aminocyclopropane-1-carboxylate synthase gene family members. Plant Physiol. 136, 2982-3000.   DOI   ScienceOn
39 Vogel, J.P., Woeste, K.E., Theologis, A., and Kieber, J.J. (1998). Recessive and dominant mutations in the ethylene biosynthetic gene ACS5 of Arabidopsis confer cytokinin insensitivity and ethylene overproduction, respectively. Proc. Natl. Acad. Sci. USA 95, 4766-4771.   DOI
40 Vriezen, W.H., Hulzink, R., Mariani, C., and Voesenek, L.A. (1999). 1-aminocyclopropane-1-carboxylate oxidase activity limits ethylene biosynthesis in Rumex palustris during submergence. Plant Physiol. 121, 189-196.   DOI
41 Wang, K.L., Yoshida, H., Lurin, C., and Ecker, J.R. (2004). Regulation of ethylene gas biosynthesis by the Arabidopsis ETO1 protein. Nature 428, 945-950.   DOI   ScienceOn
42 Wee, S., Geyer, R.K., Toda, T., and Wolf, D.A. (2005). CSN facilitates Cullin-RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nat. Cell Biol. 7, 387-391.   DOI   ScienceOn
43 Yang, S.F., and Hoffman, N.E. (1984). Ethylene biosynthesis and its regulation in higher plants.. Ann. Rev. Plant Physiol. 34, 34.
44 Woeste, K.E., Vogel, J.P., and Kieber, J.J. (1999a). Factors regulating ethylene biosynthesis in etiolated Arabidopsis thaliana seedlings. Physiol. Plant. 105, 478-484.   DOI   ScienceOn
45 Woeste, K.E., Ye, C., and Kieber, J.J. (1999b). Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol. 119, 521-530.   DOI
46 Xiong, L., Xiao, D., Xu, X., Guo, Z., and Wang, N.N. (2014). The non-catalytic N-terminal domain of ACS7 is involved in the posttranslational regulation of this gene in Arabidopsis. J. Exp. Bot. 65, 4397-4408.   DOI   ScienceOn
47 Yang, H.Y., Wen, Y.Y., Lin, Y.I., Pham, L., Su, C.H., Yang, H., Chen, J., and Lee, M.H. (2007). Roles for negative cell regulator 14-3-3sigma in control of MDM2 activities. Oncogene 26, 7355-7362.   DOI   ScienceOn
48 Yi, H.C., Joo, S., Nam, K.H., Lee, J.S., Kang, B.G., and Kim, W.T. (1999). Auxin and brassinosteroid differentially regulate the expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in mung bean (Vigna radiata L.). Plant Mol. Biol. 41, 443-454.   DOI   ScienceOn
49 Yoon, G.M., and Kieber, J.J. (2013a). 14-3-3 regulates 1-aminocyclopropane-1-carboxylate synthase protein turnover in Arabidopsis. Plant Cell 25, 1016-1028.   DOI   ScienceOn
50 Yoon, G.M., and Kieber, J.J. (2013b). ACC synthase and its cognate E3 ligase are inversely regulated by light. Plant Signal. Behav. 8, e26478.   DOI
51 Zhang, M., Yuan, B., and Leng, P. (2009). The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J. Exp. Bot. 60, 1579-1588.   DOI   ScienceOn
52 Yoshida, H., Nagata, M., Saito, K., Wang, K.L., and Ecker, J.R. (2005). Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol. 5, 14.   DOI   ScienceOn
53 Yoshida, H., Wang, K.L., Chang, C.M., Mori, K., Uchida, E., and Ecker, J.R. (2006). The ACC synthase TOE sequence is required for interaction with ETO1 family proteins and destabilization of target proteins. C 62, 427-437.   DOI
54 Zarembinski, T.I., and Theologis, A. (1994). Ethylene biosynthesis and action: a case of conservation. The 26, 1579-1597.   DOI
55 Arteca, R.N., and Arteca, J.M. (2008). Effects of brassinosteroid, auxin, and cytokinin on ethylene production in Arabidopsis thaliana plants. J. Exp. Bot. 59, 3019-3026.   DOI   ScienceOn
56 Abeles, F.B., Morgan, P.W., and Saltveit, M.E.J. (1992). Ethylene in plant biology. (San Diego, CA: Academic Press)
57 Adams, D.O., and Yang, S.F. (1977). Methionine metabolism in apple tissue-implication of S-adenosylmethionine as an intermediate in conversion of methionine to ethylene. Plant Physiol. 60, 892-896.   DOI   ScienceOn
58 Aitken, A., Collinge, D.B., van Heusden, B.P., Isobe, T., Roseboom, P.H., Rosenfeld, G., and Soll, J. (1992). 14-3-3 proteins: a highly conserved, widespread family of eukaryotic proteins. Trends Biochem Sci. 17, 498-501.   DOI   ScienceOn
59 Albagli, O., Dhordain, P., Deweindt, C., Lecocq, G., and Leprince, D. (1995). The BTB/POZ domain: a new protein-protein interaction motif common to DNA-and actin-binding proteins. Cell Growth Differ. 6, 1193-1198.
60 Argueso, C.T., Hansen, M., and Kieber, J.J. (2007). Regulation of ethylene biosynthesis.. J. Plant Growth Regul. 26, 13.
61 Ben-Nissan, G., Cui, W., Kim, D.J., Yang, Y., Yoo, B.C., and Lee, J.Y. (2008). Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules. Plant Physiol. 148, 1897-1907.   DOI   ScienceOn
62 Blatch, G.L., and Lassle, M. (1999). The tetratricopeptide repeat: a structural motif mediating protein-protein interactions. BioEssays 21, 932-939.   DOI
63 Boller, T., Herner, R.C., and Kende, H. (1979). Assay for and enzymatic formation of an ethylene precursor, 1-aminocyclopropane-1-carboxylic acid. Planta 145, 293-303.   DOI   ScienceOn
64 Bornke, F. (2005). The variable C-terminus of 14-3-3 proteins mediates isoform-specific interaction with sucrose-phosphate synthase in the yeast two-hybrid system. J. Plant Physiol. 162, 161-168.   DOI   ScienceOn
65 Bostick, M., Lochhead, S.R., Honda, A., Palmer, S., and Callis, J. (2004). Related to ubiquitin 1 and 2 are redundant and essential and regulate vegetative growth, auxin signaling, and ethylene production in Arabidopsis. Plant Cell 16, 2418-2432.   DOI   ScienceOn
66 Christians, M.J., Gingerich, D.J., Hansen, M., Binder, B.M., Kieber, J.J., and Vierstra, R.D. (2009). The BTB ubiquitin ligases ETO1, EOL1 and EOL2 act collectively to regulate ethylene biosynthesis in Arabidopsis by controlling type-2 ACC synthase levels. Plant J. 57, 332-345.   DOI   ScienceOn
67 Catala, R., Lopez-Cobollo, R., Mar Castellano, M., Angosto, T., Alonso, J.M., Ecker, J.R., and Salinas, J. (2014). The Arabidopsis 14-3-3 protein RARE COLD INDUCIBLE 1A links lowtemperature response and ethylene biosynthesis to regulate freezing tolerance and cold acclimation. Plant Cell 26, 3326-3342.   DOI   ScienceOn
68 Chae, H.S., and Kieber, J.J. (2005). Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci. 10, 291-296.   DOI   ScienceOn
69 Chae, H.S., Faure, F., and Kieber, J.J. (2003). The eto1, eto2, and eto3 mutations and cytokinin treatment increase ethylene biosynthesis in Arabidopsis by increasing the stability of ACS protein. Plant Cell 15, 545-559.   DOI
70 Crocker, W., and Knight, L.I. (1908). Effect of illuminating gas and ethylene upon flowering carnation. Bot. Gaz 46, 259-276.   DOI   ScienceOn
71 Dai, C., and Xue, H.W. (2010). Rice early flowering1, a CKI, phosphorylates DELLA protein SLR1 to negatively regulate gibberellin signalling. EMBO J. 29, 1916-1927.   DOI   ScienceOn
72 Darling, D.L., Yingling, J., and Wynshaw-Boris, A. (2005). Role of 14-3-3 proteins in eukaryotic signaling and development. Curr. Top. Dev. Biol. 68, 281-315.   DOI   ScienceOn
73 De Boer, A.H., van Kleeff, P.J., and Gao, J. (2013). Plant 14-3-3 proteins as spiders in a web of phosphorylation. Protoplasma 250, 425-440.   DOI   ScienceOn
74 Dong, J.G., Fernandez-Maculet, J.C., and Yang, S.F. (1992). Purification and characterization of 1-aminocyclopropane-1-carboxylate oxidase from apple fruit. Proc. Natl. Acad. Sci. USA 89, 9789-9793.   DOI   ScienceOn
75 De Grauwe, L., Chaerle, L., Dugardeyn, J., Decat, J., Rieu, I., Vriezen, W.H., Baghour, M., Moritz, T., Beemster, G.T., Phillips, A.L., et al. (2008a). Reduced gibberellin response affects ethylene biosynthesis and responsiveness in the Arabidopsis gai eto2-1 double mutant. New Phytol. 177, 128-141.
76 De Grauwe, L., Dugardeyn, J., and Van Der Straeten, D. (2008b). Novel mechanisms of ethylene-gibberellin crosstalk revealed by the gai eto2-1 double mutant. Plant Signal. Behav. 3, 1113-1115.   DOI
77 Denison, F.C., Paul, A.L., Zupanska, A.K., and Ferl, R.J. (2011). 14-3-3 proteins in plant physiology. Semin. Cell Dev. Biol. 22, 720-727.   DOI   ScienceOn
78 Dougherty, M.K., and Morrison, D.K. (2004). Unlocking the code of 14-3-3. J. Cell Sci. 117, 1875-1884.   DOI   ScienceOn
79 Freeman, A.K., and Morrison, D.K. (2011). 14-3-3 Proteins: diverse functions in cell proliferation and cancer progression. Semin. Cell Dev. Biol. 22, 681-687.   DOI   ScienceOn
80 Fu, H., Subramanian, R.R., and Masters, S.C. (2000). 14-3-3 proteins: structure, function, and regulation. Annu. Rev. Pharmacol. Toxicol. 40, 617-647.   DOI   ScienceOn
81 Gane, R. (1934). Production of ethylene by some ripening fruits. Nature 134, 1008-1008
82 Ganguly, S., Weller, J.L., Ho, A., Chemineau, P., Malpaux, B., and Klein, D.C. (2005). Melatonin synthesis: 14-3-3-dependent activation and inhibition of arylalkylamine N-acetyltransferase mediated by phosphoserine-205. Proc. Natl. Acad. Sci. USA 102, 1222-1227.   DOI   ScienceOn