• Title/Summary/Keyword: Alternative Carbon Source

Search Result 103, Processing Time 0.028 seconds

Biogas Production and Utilization Technologies from Organic waste (유기성폐기물을 이용한 바이오가스 생산 및 활용기술)

  • Heo, Nam-Hyo;Lee, Seung-Heon;Kim, Byeong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.202-205
    • /
    • 2008
  • Anaerobic digestion(AD) is the most promising method of treating and recycling of different organic wastes, such as OFMSW, household wastes, animal manure, agro-industrial wastes, industrial organic wastes and sewage sludge. During AD, i.e. degradation in the absence of oxygen, organic material is decomposed by anaerobes forming degestates such as an excellent fertilizer and biogas, a mixture of carbon dioxide and methane. AD has been one of the leading technologies that can make a large contribution to producing renewable energy and to reducing $CO_2$ and other GHG emission, it is becoming a key method for both waste treatment and recovery of a renewable fuel and other valuable co-products. A classification of the basic AD technologies for the production of biogas can be made according to the dry matter of biowaste and digestion temperature, which divide the AD process in wet and dry, mesophilic and thermophilic. The biogas produced from AD plant can be utilized as an alternative energy source, for lighting and cooking in case of small-scale, for CHP and vehicle fuel or fuel in industrials in case of large-scale. This paper provides an overview of the status of biogas production and utilization technologies.

  • PDF

A Review on VOCs Control Technology Using Electron Beam

  • Son, Youn-Suk;Kim, Ki-Joon;Kim, Jo-Chun
    • Asian Journal of Atmospheric Environment
    • /
    • v.4 no.2
    • /
    • pp.63-71
    • /
    • 2010
  • The removal characteristics for aromatic and aliphatic VOCs by electron beam (EB) were discussed in terms of several removal variables such as initial VOC concentration, absorbed dose, background gas, moisture content, reactor material and inlet temperature. It was reviewed that only reactor material was an independent variable among the potential control factors concerned. It was also suggested that main mechanism by EB should be radical reaction for the VOC removal rather than that by primary electrons. It was discussed that the removal efficiency of benzene was lower than that of hexane due to a closed benzene ring. In the case of aromatic VOCs, it was observed that the decomposition of the VOCs with more functional groups attached on the benzene ring was much easier than those with less ones. As for aliphatic VOCs, it was also implied that the longer carbon chain was, the higher the removal efficiency became. An EB-catalyst hybrid system was discussed as an alternative way to remove VOCs more effectively than EB-only system due to much less by-products. This hybrid included supporting materials such as cordierite, Y-zeolite, and $\gamma$-alumina.

Batch Conversion of Methane to Methanol Using Methylosinus trichosporium OB3b as Biocatalyst

  • Hwang, In Yeub;Hur, Dong Hoon;Lee, Jae Hoon;Park, Chang-Ho;Chang, In Seop;Lee, Jin Won;Lee, Eun Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.25 no.3
    • /
    • pp.375-380
    • /
    • 2015
  • Recently, methane has attracted much attention as an alternative carbon feedstock since it is the major component of abundant shale and natural gas. In this work, we produced methanol from methane using whole cells of Methylosinus trichosporium OB3b as the biocatalyst. M. trichosporium OB3b was cultured on NMS medium with a supply of 7:3 air/methane ratio at 30℃. The optimal concentrations of various methanol dehydrogenase inhibitors such as potassium phosphate and EDTA were determined to be 100 and 0.5 mM, respectively, for an efficient production of methanol. Sodium formate (40 mM) as a reducing power source was added to enhance the conversion efficiency. A productivity of 49.0 mg/l·h, titer of 0.393 g methanol/l, and conversion of 73.8% (mol methanol/mol methane) were obtained under the optimized batch condition.

Extracellular Tannase from Aspergillus ochraceus: Influence of the Culture Conditions on Biofilm Formation, Enzyme Production, and Application

  • Aracri, Fernanda Mansano;Cavalcanti, Rayza Morganna Farias;Guimaraes, Luis Henrique Souza
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.11
    • /
    • pp.1749-1759
    • /
    • 2019
  • Aspergillus ochraceus biofilm, developed on an inert support, can produce tannase in Khanna medium containing 1.5% (w/v) tannic acid as the carbon source, at an initial pH of 5.0, for 72 h at 28℃. Addition of 0.1% (w/v) yeast extract increased enzyme production. The enzyme in the crude filtrate exhibited the highest activity at 30℃ and pH 6.0. At 50℃, the half-life (T50) was 60 min and it was 260 min at pH 6.0. In general, addition of detergents and surfactants did not affect tannase activity significantly. Tannase has potential applications in various biotechnological processes such as the production of propyl gallate and in the treatment of tannin-rich effluents. The content of tannins and total phenolic compounds in effluents from leather treatment was reduced by 56-83% and 47-64%, respectively, after 2 h of enzyme treatment. The content of tannins and total phenolic compounds in the sorghum flour treated for 120 h with tannase were reduced by 61% and 17%, respectively. Interestingly, the same A. ochraceus biofilm was able to produce tannase for three sequential fermentative process. In conclusion, fungal biofilm is an interesting alternative to produce high levels of tannase with biotechnological potential to be applied in different industrial sectors.

Recent advances in tissue culture and genetic transformation system of switchgrass as biomass crop (바이오에너지 개발용 스위치그라스의 조직배양 및 형질전환 최근 연구동향)

  • Lee, Sang Il;Lim, Sung-Soo;Roh, Hee Sun;Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.40 no.4
    • /
    • pp.185-191
    • /
    • 2013
  • Over the past decades, carbon dioxide concentration of the atmosphere of the world has increased significantly, and thereby the greenhouse effect has become a social issue. To solve this problem, new renewable energy sources including solar, hydrogen, geothermal, wind and bio-energy are suggested as alternatives. Among these new energy sources, bio-energy crops are widely introduced and under rapid progress. For example, corn and oilseed rape plants are used for the production of bio-ethanol and bio-diesel, respectively. However, grain prices has increased severely because of the use of corn for bio-ethanol production. Therefore, non-edible switchgrass draws attention as an alternative source for bio-ethanol production in USA. This review describes the shortage of fossil energy and an importance of switchgrass as a bio-energy crop. Also, some characteristics of its major cultivars are introduced including growth habit, total output of biomass yields. Furthermore, biotechnological approaches have been conducted to improve the productivity of switchgrass using tissue culture and genetic transformation.

The Sterolic Properties of Heterotrophic Tetraselmis suecica

  • Jo Qtae;Choy Eun Jung;Park Doo Won
    • Fisheries and Aquatic Sciences
    • /
    • v.7 no.1
    • /
    • pp.34-38
    • /
    • 2004
  • The heterotrophic production method for Tetraselmis suecica, a suggested alternative to photoautotrophic one in the economic sense, was studied in terms of cell growth and sterolic property. The alga in the 10 mM organic carbon (glucose) manifested cell growth. However, the alga produced by the heterotrophic method showed a unique property of sterol determined with an aid of GC and GC-MS. The photoautotrophic control T. suecica contained 6 detectable sterol species: $cholesta-5,\;22-dien-3\beta-o1$, $ergost-5-en-3\beta-o1$, cholest-5-en-3\beta-o1$, $24-methyl-cholesta-5,\;22-dien-3\beta-o1$, $24-methylcholesta-5,\;24-dien-3\beta-o1$, $24-ethylchlolesta-5,\;24-dien-3\beta­o1$, $24-methylcholesta-5-en-3\beta-o1$, and $24-ethylchlolesta-5en-3\beta-o1$. We discuss the sterolic properties of the alga along the heterotrophic progress, particularly focusing on the availability of the method in the aquaculture of bivalves which normally need sterols as a dietary source.

A Phosphate Starvation-Inducible Ribonuclease of Bacillus licheniformis

  • Nguyen, Thanh Trung;Nguyen, Minh Hung;Nguyen, Huy Thuan;Nguyen, Hoang Anh;Le, Thi Hoi;Schweder, Thomas;Jurgen, Britta
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1464-1472
    • /
    • 2016
  • The BLi03719 protein of Bacillus licheniformis DSM13 belongs to the most abundant extracellular proteins under phosphate starvation conditions. In this study, the function of this phosphate starvation inducible protein was determined. An amino-acid sequence analysis of the BLi03719-encoding gene showed a high similarity with genes encoding the barnase of Bacillus amyloliquefaciens FZB42 and binase-like RNase of Bacillus pumilus SARF-032. The comparison of the control strain and a BLi03719-deficient strain revealed a strongly reduced extracellular ribonuclease activity of the mutant. Furthermore, this knockout mutant exhibited delayed growth with yeast RNA as an alternative phosphate and carbon source. These results suggest that BLi03719 is an extracellular ribonuclease expressed in B. licheniformis under phosphate starvation conditions. Finally, a BLi03719 mutant showed an advantageous effect on the overexpression of the heterologous amyE gene under phosphate-limited growth conditions.

Growth Characteristics of Polyporales Mushrooms for the Mycelial Mat Formation

  • Bae, Bin;Kim, Minseek;Kim, Sinil;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.49 no.3
    • /
    • pp.280-284
    • /
    • 2021
  • Mushroom strains of Polyporales from the genera Coriolus, Trametes, Pycnoporus, Ganoderma, and Formitella were explored in terms of mycelial growth characteristics for the application of mushroom mycelia as alternative sources of materials replacing fossil fuel-based materials. Among the 64 strains of Polyporales, G. lucidum LBS5496GL was selected as the best candidate because it showed fast mycelial growth with high mycelial strength in both the sawdust-based solid medium and the potato dextrose liquid plate medium. Some of the Polyporales in this study have shown good mycelial growth, however, they mostly formed mycelial mat of weak physical strength. The higher physical strength of mycelial mat by G. lucidum LBS5496GL was attributed to its thick hyphae with the diameter of 13 mm as revealed by scanning electron microscopic analysis whereas the hyphae of others exhibited less than 2 mm. Glycerol and skim milk supported the best mycelial growth of LBS5496GL as a carbon and a nitrogen source, respectively.

A Study on Transient Injection Rate Measurement of Gas Fuels Using Force Sensor (힘센서를 이용한 기상 연료의 과도적 분사율 계측에 관한 연구)

  • Jaehyun, Lee;Gyuhan, Bae;Youngmin, Ki;Seoksu, Moon
    • Journal of ILASS-Korea
    • /
    • v.27 no.4
    • /
    • pp.181-187
    • /
    • 2022
  • For carbon neutrality, direct-injection hydrogen engines are attracting attention as a future power source. It is essential to estimate the transient injection rate of hydrogen for the optimization of hydrogen injection in direct injection engines. However, conventional injection rate measurement techniques for liquid fuels based on the injection-induced fuel pressure change in a test section are difficult to be applied to gaseous fuels due to the compressibility of the gas and the sealing issue of the components. In this study, a momentum flux measurement technique is introduced to obtain the transient injection rate of gaseous fuels using a force sensor. The injection rate calculation models associated with the momentum flux measurement technique are presented first. Then, the volumetric injection rates are estimated based on the momentum flux data and the calculation models and compared with those measured by a volumetric flow rate meter. The results showed that the momentum flux measurement can detect the injection start and end timings and the transient and steady regimes of the fuel injection. However, the estimated volumetric injection rates showed a large difference from the measured injection rates. An alternative method is suggested that corrects the estimated injection rate results based on the measured mean volumetric flow rates.

Research on recycling technology for spent cathode materials of lithium-ion batteries using solid-state synthesis (고상법을 활용한 리튬이차전지 폐양극활물질 재활용 기술 연구)

  • Donghun Kang;Joowon Im;Minseong Ko
    • Journal of the Korean institute of surface engineering
    • /
    • v.56 no.4
    • /
    • pp.259-264
    • /
    • 2023
  • As the demand for lithium-ion batteries, a key power source in electric vehicles and energy storage systems, continues to increase for achieving global carbon neutrality, there is a growing concern about the environmental impact of disposing of spent batteries. Extensive research is underway to develop efficient recycling methods. While hydrometallurgy and pyrometallurgy methods are commonly used to recover valuable metals from spent cathode materials, they have drawbacks including hazardous waste and complex processes. Hence, alternative recycling methods that are environmentally friendly are being explored. However, recycling spent cathode materials still remains complex and energy-intensive. This study focuses on a novel approach called solid-state synthesis, which aims at regenerating the performance of spent cathode materials. The method offers a simpler process and reduces energy consumption. Optimal heat treatment conditions were identified based on experimental results, contributing to the development of sustainable recycling technologies for lithium-ion batteries.