Browse > Article
http://dx.doi.org/10.5657/fas.2004.7.1.034

The Sterolic Properties of Heterotrophic Tetraselmis suecica  

Jo Qtae (Aquaculture Department, National Fisheries Research and Development Institute)
Choy Eun Jung (Aquaculture Department, National Fisheries Research and Development Institute)
Park Doo Won (Aquaculture Division, South Sea Fisheries Research Institute)
Publication Information
Fisheries and Aquatic Sciences / v.7, no.1, 2004 , pp. 34-38 More about this Journal
Abstract
The heterotrophic production method for Tetraselmis suecica, a suggested alternative to photoautotrophic one in the economic sense, was studied in terms of cell growth and sterolic property. The alga in the 10 mM organic carbon (glucose) manifested cell growth. However, the alga produced by the heterotrophic method showed a unique property of sterol determined with an aid of GC and GC-MS. The photoautotrophic control T. suecica contained 6 detectable sterol species: $cholesta-5,\;22-dien-3\beta-o1$, $ergost-5-en-3\beta-o1$, cholest-5-en-3\beta-o1$, $24-methyl-cholesta-5,\;22-dien-3\beta-o1$, $24-methylcholesta-5,\;24-dien-3\beta-o1$, $24-ethylchlolesta-5,\;24-dien-3\beta­o1$, $24-methylcholesta-5-en-3\beta-o1$, and $24-ethylchlolesta-5en-3\beta-o1$. We discuss the sterolic properties of the alga along the heterotrophic progress, particularly focusing on the availability of the method in the aquaculture of bivalves which normally need sterols as a dietary source.
Keywords
Heterotrophic culture; Tetraselmis suecica; Sterols; Bivalve aquaculture;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wright, D.C., L.R. Berg and G.W. Patterson. 1980. Effect of cultural conditions on the sterols and fatty acids of green algae. Phytochemistry, 19, 783-785   DOI   ScienceOn
2 Shi, X.M., F. Chen, J.P. Yuan and H. Chen. 1997. Heterotrophic production of lutein by selected Chlorella strains. J. Appl. Phycol., 9, 445-450   DOI   ScienceOn
3 Teshima, S. 1991. Sterols of Crustaceans, Molluscs and Fish. In: Physiology and Biochemistry of Sterols, Patterson G.W. and W.D. Nes, eds. American Oil Chemists' Society, Champaign, Illinois, pp. 229-256
4 Tsavalos, A.J and J.G. Day. 1994. Development of media for the mixotrophic/heterotrophic culture of Brachiomonas submarina. J. Appl. Phycol., 6, 431-433   DOI   ScienceOn
5 V$\ron, B., J.C. Dauguet and C. Billard.. 1996a. Sterolic biomarkers in marine phytoplankton. I. Free and conjugated sterols of Pavlova lutheri (Haptophyta). Eur. J. Phycol., 31, 211-215   DOI   ScienceOn
6 V$\ron, B., C. Billard, J.C. Dauguet and M.A. Hartmann. 1996b. Sterol composition of Phaeodactylum tricornutum as influenced by growth temperature and light spectral quality. Lipids, 31, 989-994   DOI   ScienceOn
7 V$\ron, B., J.C. Dauguet and C. Billard. 1998. Sterolic biomarkers in marine phytoplankton. II. Free and conjugated sterols of seven species used in mariculture. J. Phycol., 34, 273-279   DOI   ScienceOn
8 Volkman, J.K., H.R. Burton, D.A. Everitt and D.J. Allen. 1988. Pigment and lipid compositions of algal and bacterial communities in Ace Lake, Vestfold Hills, Antartica. Hydrobiol., 165, 41-57   DOI
9 Wikfors, G.H., P.K. Gladu and G.W. Patterson. 1991. In search of the ideal algal diet for oysters: Recent progress, with emphasis on sterols (Abstract). J. Shellfish Res., 10, 292
10 Wojciechowski, Z.A. 1991. Biochemistry of phytosterol conjugates. In: Physiology and Biochemistry of Sterols, Patterson G.W. and W.D. Nes, eds. American Chemists' Society, Champaign, Illinois, pp. 361-395
11 Jo, Q., EJ, Choy, D.W. Park and B.Vron. 2004. Sterol dynamics of heterotrophic Tetraselmis suecica and its nut itional implication in the bivalve aquaculture. Aquacult. Res., 35, 371-377   DOI   ScienceOn
12 Leblond, J.D. and P.K. Chapman. 2000. Sterols as biomarkers in Gymnodinium breve: Distribution in dinoflagellates. J. Phycol., 36, Suppl. 42
13 Leblond, J.D. and P.J. Chapman. 2002. A survey of the sterol composition of the marine dinoflagellates Karenia brevis, Kerena mikimotoi, and Karlodinium icrum: distribution of sterols within other members f the class Dinophyceae. J. Phycol., 38, 670-682   DOI   ScienceOn
14 Lin, D.S., A.M. Bias, W.E. Connor, R.S. Caldwell, H.T. Cory and G.D. Daves. 1982. Composition and biosynthesis of sterol in selected marine phytoplankton. Lipids, 17, 818-824   DOI
15 Park, D.W., Q. Jo, H.J. Lim and B. Vron. 2002. Sterol composition of dark grown Isochrysis galbana and its implication in the seed production of Pacific oyster, Crassostrea gigas. J. Appl. Phycol., 14, 351-355   DOI   ScienceOn
16 Nes, W.R. and M.L. McKean. 1977. Biochemistry of steroids and other isopentenoids. University Park Press, Baltimore, pp. 629
17 Nes, W.D., R.A. Norton, F.G. Crumley, S.J. Madigan and E.R. Katz. 1990. Sterol phylogenesis and algal evolution. Proc. Natl. Acad. Sci. USA., 87, 7565-7569   DOI   ScienceOn
18 Nes, W.D. 2000. Sterol methyl transferase: enzymology and inhibition. Biochim. Biophys. Acta, 1529, 63-88   DOI   ScienceOn
19 Patterson, G.W., E. Tsitsa-Tzardis, G.H. Wikfors, P.K. Gladu, D.J. Chitwood and D. Harrison. 1993. Sterols of Tetraselmis (Prasinophyceae). Comp. Biochem. Physiol., 105, 253-256   DOI   ScienceOn
20 Ballantine, J.A., A. Lavis and R.J. Morris. 1979. Sterols of phytoplankton: effects of illumination and growth stage. Phytochemistry, 18, 1459-1466   DOI   ScienceOn
21 Barclay, W.R., K.M. Meager and J.R. Abril. 1994. Heterorophic production of long chain omega 3 fatty acids lltilizing algae and algae like microorganisms. J. Appl. Phycol., 6, 123-129   DOI   ScienceOn
22 Chen, F. and M.R. Johns. 1995. A strategy for high cell dcnsity culture of heterotrophic microalgae with inhibitory substrates. J. Appl. Phycol., 46, 43-47
23 Chen, F. 1996. High cell density culture of microalgae in heterotrophic growth. Tibtech, 14, 421-426   DOI   ScienceOn
24 Danton, E. B. Vron and M. Mathieu. 1999. Influence of diet level on sterols of diploid and triploid oysters Crassc strea gigas (Thunberg). J. Exp. Mar. Biol. Ecol., 233, 259-267   DOI   ScienceOn
25 Holden, M.J. and G.W. Patterson. 1991. Absence of sterol biosyw hesis in oyster tissue culture. Lipids, 26, 81-82   DOI