Browse > Article
http://dx.doi.org/10.4014/jmb.1601.01087

A Phosphate Starvation-Inducible Ribonuclease of Bacillus licheniformis  

Nguyen, Thanh Trung (Center for Molecular Biology, Institute of Research and Development, Duy Tan University)
Nguyen, Minh Hung (Center for Molecular Biology, Institute of Research and Development, Duy Tan University)
Nguyen, Huy Thuan (Center for Molecular Biology, Institute of Research and Development, Duy Tan University)
Nguyen, Hoang Anh (Faculty of Food Science and Technology, Vietnam National University of Agriculture)
Le, Thi Hoi (Clinical Laboratory, National Hospital of Tropical Diseases)
Schweder, Thomas (Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University)
Jurgen, Britta (Pharmaceutical Biotechnology, Institute of Pharmacy, Ernst-Moritz-Arndt-University)
Publication Information
Journal of Microbiology and Biotechnology / v.26, no.8, 2016 , pp. 1464-1472 More about this Journal
Abstract
The BLi03719 protein of Bacillus licheniformis DSM13 belongs to the most abundant extracellular proteins under phosphate starvation conditions. In this study, the function of this phosphate starvation inducible protein was determined. An amino-acid sequence analysis of the BLi03719-encoding gene showed a high similarity with genes encoding the barnase of Bacillus amyloliquefaciens FZB42 and binase-like RNase of Bacillus pumilus SARF-032. The comparison of the control strain and a BLi03719-deficient strain revealed a strongly reduced extracellular ribonuclease activity of the mutant. Furthermore, this knockout mutant exhibited delayed growth with yeast RNA as an alternative phosphate and carbon source. These results suggest that BLi03719 is an extracellular ribonuclease expressed in B. licheniformis under phosphate starvation conditions. Finally, a BLi03719 mutant showed an advantageous effect on the overexpression of the heterologous amyE gene under phosphate-limited growth conditions.
Keywords
Bacillus licheniformis; barnase; binase; phosphate starvation; ribonuclease;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, et al. 2010. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol. Rev. 34: 883-923.   DOI
2 Bailey JM, Biely P, Poutanen K. 1992. Interlaboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23: 257-270.   DOI
3 Härtl B, Wehrl W, Wiegert T, Homuth G, Schumann W. 2001. Development of a new integration site within the Bacillus subtilis chromosome and construction of compatible expression cassettes. J. Bacteriol. 183: 2696-2699.   DOI
4 Chen M, Nagarajan V. 1993. The roles of signal peptide and mature protein in RNase (barnase) export from Bacillus subtilis. Mol. Gen. Genet. 239: 409-415.   DOI
5 Deutscher MP. 2015. How bacterial cells keep ribonucleases under control. FEMS Microbiol. Rev. 39: 350-361.   DOI
6 Hahnen E, Znamenskaya L, Koczan D, Leshchinskaya I, Hobom G. 2000. A novel secreted ribonuclease from Bacillus intermedius: gene structure and regulatory control. Mol. Gen. Genet. 263: 571-580.   DOI
7 Hartley RW. 1988. Barnase and barstar. Expression of its cloned inhibitor permits expression of a cloned ribonuclease. J. Mol. Biol. 202: 913-915.   DOI
8 Hartley RW. 1989. Barnase and barstar: two small proteins to fold and fit together. Trends Biochem. Sci. 14: 450-454.   DOI
9 Hartley RW, Barker EA. 1972. Amino-acid sequence of extracellular ribonuclease (barnase) of Bacillus amyloliquefaciens. Nat. New Biol. 235: 15-16.   DOI
10 Hoffmann K, Wollherr A, Larsen M, Rachinger M, Liesegang H, Ehrenreich A, Meinhardt F. 2010. Facilitation of direct conditional knockout of essential genes in Bacillus licheniformis DSM13 by comparative genetic analysis and manipulation of genetic competence. Appl. Environ. Microbiol. 76: 5046-5057.   DOI
11 Hoi LT, Voigt B, Jürgen B, Ehrenreich A, Gottschalk G, Evers S, et al. 2006. The phosphate-starvation response of Bacillus licheniformis. Proteomics 6: 3582-3601.   DOI
12 Nijland R, Hall MJ, Burgess JG. 2010. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5: e15668.   DOI
13 Jeong MY, Lee ER, Yun CW, Cho SG, Choi YJ. 2006. Post-transcriptional regulation of the xynA expression by a novel mRNA binding protein, XaiF. Biochem. Biophys. Res. Commun. 351: 153-158.   DOI
14 Jürgen B, Barken KB, Tobisch S, Pioch D, Wumpelmann M, Hecker M, Schweder T. 2005. Application of an electric DNA-chip for the expression analysis of bioprocess-relevant marker genes of Bacillus subtilis. Biotechnol. Bioeng. 92: 299-307.   DOI
15 Sharipova MR, Lopukhov LV, Vershinina OA, Leshchinskaya IB. 2005. Some secretion characteristics of bacterial ribonucleases. Microbiology 74: 27-31.   DOI
16 Mossakowska DE, Nyberg K, Fersht AR. 1989. Kinetic characterization of the recombinant ribonuclease from Bacillus amyloliquefaciens (Barnase) and investigation of key residues in catalysis by site-directed mutagenesis. Biochemistry 28: 3843-3850.   DOI
17 Paddon CJ, Hartley RW. 1986. Cloning, sequencing and transcription of an inactivated copy of Bacillus amyloliquefaciens extracellular ribonuclease (barnase). Gene 40: 231-239.   DOI
18 Schulga AA, Nurkiyanova KM, Zakharyev VM, Kirpichnikov MP, Skryabin KG. 1992. Cloning of the gene encoding RNase binase from Bacillus intermedius 7P. Nucleic Acids Res. 20: 2375.   DOI
19 Stülke J, Hillen W. 2000. Regulation of carbon catabolism in Bacillus species. Annu. Rev. Microbiol. 54: 849-880.   DOI
20 Truong LV. 2006. Characterization of the pectinolytic enzymes of the marine psychrophilic bacterium Pseudoalteromonas haloplanktis strain ANT/505. Ph.D. thesis, University of Greifswald, Germany. Available at http://ub-ed.ub.uni-greifswald.de/opus/volltexte/2006/312/pdf/Truong_thesis_20.9.06.pdf.
21 Ulyanova V, Vershinina V, Ilinskaya O. 2011. Barnase and binase: twins with distinct fates. FEBS J. 278: 3633-3643.   DOI
22 Ulyanova V, Vershinina V, Ilinskaya O, Harwood CR. 2015. Binase-like guanyl-preferring ribonucleases are new members of Bacillus PhoP regulon. Microbiol. Res. 170: 131-138.   DOI
23 Voigt B, Hoi LT, Jürgen B, Albrecht D, Ehrenreich A, Veith B, et al. 2007. The glucose and nitrogen starvation response of Bacillus licheniformis. Proteomics 7: 413-423.   DOI
24 Znamenskaya LV, Gabdrakhmanova LA, Chernokalskaya EB, Leshchinskaya IB, Hartley RW. 1995. Phosphate regulation of biosynthesis of extracellular RNases of endospore-forming bacteria. FEBS Lett. 357: 16-18.   DOI
25 Waschkau B, Waldeck J, Wieland S, Eichstadt R, Meinhardt F. 2008. Generation of readily transformable Bacillus licheniformis mutants. Appl. Microbiol. Biotechnol. 78: 181-188.   DOI
26 Wetzstein M, Völker U, Dedio J, Lobau S, Zuber U, Schiesswohl M, et al. 1992. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. J. Bacteriol. 174: 3300-3310.   DOI
27 Yon J, Fried M. 1989. Precise gene fusion by PCR. Nucleic Acids Res. 17: 4895.   DOI
28 Znamenskaya LV, Vershinina OA, Vershinina VI, Leshchinskaya IB, Hartley RW. 1999. Expression of the genes for guanyl-specific ribonucleases from Bacillus intermedius and Bacillus pumilus is regulated by the two-component signal-transduction system PhoP–PhoR in B. subtilis. FEMS Microbiol. Lett. 173: 217-222.   DOI