• Title/Summary/Keyword: Allozyme loci

Search Result 49, Processing Time 0.03 seconds

Lack of allozyme variation in the two carnivorous, terrestrial herbs Utricularia bifida and Utricularia caerulea (Lentibulariaceae) co-occurring on wetlands in South Korea: Inference of population history (한반도 남부 지방 습지에 같이 자생하는 식충 육상 초본 2종 땅귀개 및 이삭귀개 (통발과)의 알로자임 변이의 결여: 집단의 역사 추론)

  • Chung, Mi Yoon;Lopez-Pujol, Jordi;Chung, Myong Gi
    • Korean Journal of Plant Taxonomy
    • /
    • v.47 no.4
    • /
    • pp.297-303
    • /
    • 2017
  • In central and southern Korea, the two small insectivorous, terrestrial herbs, Utricularia bifida and U. caerulea, often co-occur at wet locations (or in wetlands). The Korean Peninsula (with central China and northern Japan) constitutes the northern edge of their distribution, as their main range is subtropical and tropical Asia. The Korean populations of both species are very likely of post-glacial origin, given that warm-temperate vegetation was absent from the Korean Peninsula during the Last Glacial Maximum. Two hypotheses of the post-glacial colonization of the peninsula can be formulated; first, if current populations were founded by propagules coming from a single ancestral population (i.e., a single refugium), we would expect low levels of genetic diversity. Alternatively, if contemporary Korean populations originated from multiple sources (multiple refugia), we would expect high levels of genetic variation. To test which is more likely, we surveyed the degree of allozyme variation at 20 loci in ten populations for each of the two species from southern Korea. We found no allozyme variation within each species. However, their aquatic congener U. australis exhibited allozyme polymorphism across Japan (four polymorphic loci at three enzyme systems). We suggest that southern Korean populations of Utricularia bifida and U. caerulea were established by a single introduction event from a genetically depauperate ancestral population.

Genetic Structure In Korean Populations of Atractomorpha lata (Orthoptera: Pyrgomorphidae)

  • Jeong, Myeong-Ji;Gang, Sun-Seok;Yeehn, Yeeh
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.535-538
    • /
    • 1997
  • Allozyme variation of seven enzyme systems was analyzed from 202 individuals from four Korean populations of Atractomorpha lata. These populations exhibit higher levels of values of in most other insects with a mean 64% of polymorphic loci and a mean 0.384 of expected heterozygosity within populations. Fixation indices indicated considerable substructuring within populations sampled (mean $F_{is}=0.403)$, indicating probable inbreeding or assortative mating coupled with restricted migration between subpopulations. This was supported by the field observation that the species exists as small, discrete colonies in meadow habitats and females carry males. In addition, significant differences in allere frequencies between males and females at polymorphic loci examined (70%, 16 of 23 cases) could account for the observed heterozygote deficiencies.

  • PDF

Mating Systems and Inbreeding Pressure in Populations of Wild Lentil Tare, Vicia tetrasperm (Leguminosae) (얼치기완두(콩과) 집단의 교배계와 내교잡 압력)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1477-1481
    • /
    • 2007
  • The mating systems of natural populations of Vicia tetrasperm in Korea were determined using allozyme analysis. The result suggests that V. tetrasperm is low rates of outcrossing or mix-mating outcrossing (self-fertilization, s < 0.5). At the population levels, the values of inbreeding coefficient of ten populations in Korea varied from 0.131 to 0.176, giving an average 0.154. For ten natural populations, multi-locus estimates of outcrossing (tm) was 0.333 across fifteen polymorphic loci, with individual population values ranging from 0.269 to 0.423. The differences between the tm and ts values were not close to zero (tm - ts > 0.154), indicating that biparental inbreeding was significant in the loci. The reason for relatively low outcrossing rates of some populations could be attributed to extensive consanguineous mating and isolation of flowering mature plants. Although heterozygote excess was observed in one natural population, most populations exhibited varying degrees of inbreeding and heterozygotes deficit. Thus, selection against homozygotes operated in the progeny populations throughout the life cycle.

Genetic Diversity of Soybean Landraces in Korea

  • Han, Ouk-Kyu;Abe, Jun;Shimamoto, Yoshiya
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.3
    • /
    • pp.256-262
    • /
    • 1999
  • To evaluate the genetic diversity and structure of the South Korean soybean population, 233 landraces collected in various regions of the country were surveyed for 15 allozyme loci and one protein locus. The South Korean population was fixed or nearly fixed at seven of the 16 loci tested. The number of alleles per locus was 2.06 and Nei’s gene diversity was 0.194. These values were lower than the values for the same 16 loci previously reported for the Japanese and Chinese populations. The differences among eight regional groups were not so marked, with only 7.2% of the total variation arising from regional differentiation. Three southern regional groups (Chollabuk-do, Chollanam-do and Kyong-sangnam-do) exhibited a relatively high variability because of frequent occurrence of alleles characteristic of the Japanese population. A marked difference was found in allelic frequencies at the Dial locus between large-seeded landraces and small-seeded ones, suggesting that the latter, which are used mainly for bean sprouts, had been established independently of the former, which are used mostly for soy sauce and cooking with rice. Not only the region but also the usage as food materials should therefore be taken into consideration in designing an efficient collection and preservation method for the Korean soybean landraces.

  • PDF

Genetic Diversity and Population Structure of Glehnia littoralis (Umbelliferae) in Korea

  • Huh Man Kyu;Choi Joo Soo;Huh Hong Wook;Choi Yung Hyun;Choi Byung Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.6
    • /
    • pp.1519-1523
    • /
    • 2003
  • Glehnia littoralis Fr. Schmidt (Umbelliferae) is a short-lived herbaceous species that are mostly distributed throughout East Asia. Although G. littoralis has been regarded as ecologically important one, there is no report on population structure in Korea. Starch gel electrophoresis was used to investigate the allozyme variation and genetic structure of Korean populations of this species. A high level of genetic variation was found in G. littoral is populations. Nine enzymes revealed 18 loci, of which 12 were polymorphic (66.7%). Genetic diversity at the species and population levels were 0.159 and 0.129, respectively. The sexual and asexual reproduction, high fecundity, and colonization process are proposed as possible factors contributing to genetic diversity. An indirect estimate of the number of migrants per generation (Nm = 1.45) indicated that gene flow was not extensive among Korean populations of this species. It is suggested that the ability of vegetation and artificial selection may have played roles in shaping the population structure of this species. we recommend that a desirable conservation population should be included at least 30 plants per population and especially those with high variation.

Systemetic Study on the Family Pectinidae (Bivalvia) in Korea. Allozyme Variability (한국산 가리비과(Pectinidae: Bivalvia) 패류의 계통분류학적 연구. 동이원소)

  • 김재진;박갑만
    • The Korean Journal of Malacology
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 1999
  • Electrophoretic analysis was carried out to elucidate genetic relationships of four Korean scallops, Patinopecten yessoensis, chlamys ferreri ferreri, Chlamys swifti and Amusium japonicum japonicum, and of a Chinese population of C. ferreri ferreri purchased form a market. Glucose phosphate isomerase banding pattern was highly varied among eight loci. Three populations of C. ferreri ferreri were more closely clustered in a dendrogram within the range of Nei's genetic similarity values of 0.730-0.830. P. yessoenensis and Chlamys swifti were clustered with genetic similarity value of 0.647. These two clusters were lineated at the value of 0.598. A. japonicum japonicum was clustered with other three species at value of 0.541.

  • PDF

A Preliminary Population Genetic Study of an Overlooked Endemic ash, Fraxinus chiisanensis in Korea Using Allozyme Variation

  • Lee, Heung Soo;Chang, Chin-Sung;Kim, Hui;Choi, Do Yeol
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.531-538
    • /
    • 2009
  • We used enzyme electrophoresis to evaluate genetic diversity in five populations of endemic ash, Fraxinus chiisanensis in Korea. Of 15 putative allozyme loci examined 26.7% were polymorphic and expected heterozygosity for the species was low (0.082). Within the range, population were highly differentiated ($F_{ST}$=0.356) and little genetic variation was explained by geography. The pattern of distribution of variation showed low genetic variation within populations and pronounced divergence among populations, which was consistent with the prediction for the effects of limited gene flow and local genetic erosion. Although the frequencies of male plants were dominant ranging from 79.3% to 89.4%, most mating events seems to be inevitable mating between relatives in small populations based on heterozygote deficiency of this species. Small effective population size and the limited dispersal contributed to the low rates of gene flow within as well as between populations.

Genetic Variation and Population Structure of Alder (Alnus hirsuta : Betulaceae) in Korea

  • Park, Joo-Soo;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.10 no.1
    • /
    • pp.14-19
    • /
    • 2000
  • Variation at 25 allozyme loci in Korean wateralder (Alnus hirsuta Rupr.) from nine distinct populations was measured to estimate the amount and pattern of genetic diversity and population structure. The mean genetic diversity within population was 0.166. Korean alder populations have slightly high levels of genetic diversity compared to those present in associated temperature-zone species and two Canadian alder species. Among population s genetic differentiation accounted for an significant 9% of the total variation. High gene flow(Nm=2.63) was observed. Analysis of fixation indices, calculated for all polymorphic loci in each population, showed a substantial deficiency of heterozygotes relative to Hardy-Weinberg expectations. The mean GST value A. hirsuta in Korea (GST = 0.087) is similar to those of A. rogosa in Canada (GST = 0.052). These low values of GST in two countries. reflecting little spatial genetic differentiation, may indicate extensive gene flow (via pollen and/or seeds) and/or recent colonization. These factors reduce the effect of geographic isolation of breeding and the chance for genetic divergence. A pattern of increasing is observed with increasing rainfall per year. Regression analysis indicates that 54% (F = 4.67) of the variability observed can be explained by this relationship.

  • PDF

Allozyme Diversity and Population Genetic Structure in Korean Endemic Plant Species : II. Hosta yingeri (Liliaceae)

  • Chung, Myong Gi
    • Journal of Plant Biology
    • /
    • v.37 no.2
    • /
    • pp.141-149
    • /
    • 1994
  • Levels of genetic diversity, population genetic structure, and gene flow in Hosta yingeri, a herbaceous perennial endemic to Taehuksan, Sohuksan, and Hong Islands, were investigated. Starch gel electrophoresis was conducted on leaves for 101 plants collected from three populations. Although the distribution of thespecies is restricted in the islands, it maintains high levels of genetic variatin; 64% of polymorphic loci in at least one population (Ps), the mean number of alleles per locus (Ap) of 1.92, and the mean effective number of alleles per locus (Aep) of 1.52. Overall, mean genetic diversity (Hep=0.250) was substantially higher than mean estimate for species with very similarlife history traits (0.102). Large populaton size, the persistence of multiple generations within populations, high fecundity, predominantly outcrossing breeding system, large size of pollinator visitation areas may be explanatory factors contributing the higher level of genetic diversity maintained within populations. Analysis of fixation indices showed an overall slight excess of heterozygotes (mean FIS=-0.066) relative to Hardy-Weinberg expectations, which may in part be due to the near self-incompatible breeding system in the species. Significant differences in allele frequencies among populaitns were found for 14 out of 16 polymorphic loci (P<0.05). Slightly more than 80% of the total variation in the species was common to all populations (GST=0.198). As expected, indirect estimate of the number of migrants per generation (Nm=0.45, calculated from mean GST) and nine private alleles found in the three populations indicate that gene movement among three isolated island populations was low.

  • PDF

Genetic Diversity and Population Structure in East Asian Populations of Plantago asiatica (동아시아 질경이 집단의 유전적 다양성과 집단구조)

  • Huh, Man Kyu
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.728-735
    • /
    • 2013
  • Plantago asiatica (Plantaginaceae) is a wind-pollinated plant that grows mainly on fields in East Asia. Starch gel electrophoresis was used to investigate the allozyme diversity and population structure of 18 populations of this species. Although the plantain populations were isolated and patchily distributed, they maintained a high level of genetic diversity; the average percentage of polymorphic loci was 57.1%, the mean number of alleles per locus was 2.07, and the average heterozygosity for 18 populations was 0.201. The combination of a predominant wind-pollinated, mix-mating reproduction, large population sizes, high gene flow between subpopulations, and a propensity for high fecundity may explain the high level of genetic diversity within populations. A direct gradient in overall genetic diversity is associated with latitude. Genetic diversity of P. asiatica is markedly decreased from $35^{\circ}3^{\prime}$ to high latitude and decreased from $35^{\circ}3^{\prime}N$ to low latitude, whereas there does not show a longitudinal gradient in genetic diversity.