Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.6.728

Genetic Diversity and Population Structure in East Asian Populations of Plantago asiatica  

Huh, Man Kyu (Department of Molecular Biology, Dongeui University)
Publication Information
Journal of Life Science / v.23, no.6, 2013 , pp. 728-735 More about this Journal
Abstract
Plantago asiatica (Plantaginaceae) is a wind-pollinated plant that grows mainly on fields in East Asia. Starch gel electrophoresis was used to investigate the allozyme diversity and population structure of 18 populations of this species. Although the plantain populations were isolated and patchily distributed, they maintained a high level of genetic diversity; the average percentage of polymorphic loci was 57.1%, the mean number of alleles per locus was 2.07, and the average heterozygosity for 18 populations was 0.201. The combination of a predominant wind-pollinated, mix-mating reproduction, large population sizes, high gene flow between subpopulations, and a propensity for high fecundity may explain the high level of genetic diversity within populations. A direct gradient in overall genetic diversity is associated with latitude. Genetic diversity of P. asiatica is markedly decreased from $35^{\circ}3^{\prime}$ to high latitude and decreased from $35^{\circ}3^{\prime}N$ to low latitude, whereas there does not show a longitudinal gradient in genetic diversity.
Keywords
Allozyme; gene flow; latitudinal gradient; Plantago asiatica;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Charlesworth, D. 1993. Why are unisexual flowers associated with wind pollination and unspecialized pollinators? Am Nat 141, 481-490.   DOI   ScienceOn
2 Godt, M. J. W. and Hamrick, J. L. 1993. Genetic diversity and population structure in Tradescantia hirsuticaulis (Commelinae). Am J Bot 80, 959-966.   DOI   ScienceOn
3 Godt, M. J. W. and Hamrick, J. L. 1998. Allozyme diversity in the endangered pitcher plant Sarracenia rubra ssp. alabamensis (Sarraceniaceae) and its close relative S. rubra ssp. rubra. Am J Bot 85, 802-810.   DOI   ScienceOn
4 Goudet, J. 1995. FSTAT v-1.2: a computer program to calculate F-statistics. J Hered 86, 485-486.
5 Hamrick, J. L. and Godt, M. J. W. 1989. Allozyme diversity in plant species, pp. 43-63. In: Brown, A. H. D., Clegg, M. T., Kahler, K. L. and Weir, B. S. (eds.), Plant Population Genetics, Breeding, and Genetic Resources. Sinauer: Sunderland, MA.
6 Hamrick, J. L., Godt, M. J. W. and Sherman-Broyles, S. L. 1992. Factors influencing levels of genetic diversity in woody plant species. New Forests 6, 95-124.   DOI   ScienceOn
7 Hartl, D. L. and Clark, A. G. 1989. Principles of Population Genetics, pp. 682, 2nd ed., Sinauer: Sunderland, MA.
8 Kim, Y. S. 1975. Taxonomic study on genus Plantago in Korea. The Sciences and Technologies, Korea University 16, 39-71.
9 Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70, 3321-3323.   DOI   ScienceOn
10 Nei, M. 1977. F-statistics and analysis of gene diversity in subdivided populations. Ann Hum Genet 41, 225-233.   DOI   ScienceOn
11 Nevo, E., Beiles, A. and Ben-Shlomo, R. 1984. The evolutionary significance of genetic diversity: ecological, demographic and life history correlates, pp. 13-21. In: Many, G. S. (ed.), Evolutionary Dynamics of Genetic Diversity. Springer:Berlin.
12 Palacieos, I. S., Molina, R. T. and Rodriguez, M. 2000. Influence of wind direction on pollen concentration in the atmosphere. Int J Biometeorol 44, 128-133.   DOI
13 Van Dijk, H. 1989. Genetic variability in Plantago species in relation to their ecology. 1. Ecotypic differentiation in P. major. Theor Appl Genet 77, 749-759.   DOI   ScienceOn
14 Smouse, P. E., Long, J. C. and Sokal, R. R. 1986. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. System Zool 35, 627-632.   DOI   ScienceOn
15 Soltis, D. E., Haufer, H., Darrow, D. C. and Gastony, G. J. 1983. Starch gel electrophoresis of ferns: A compilation of grinding buffers, gel and electrode buffers, and staining schedules. Am Fern J 73, 9-27.   DOI   ScienceOn
16 Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. 2011. MEGA5: Molecular Evolutionary Genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28, 2731-2739.   DOI   ScienceOn
17 Van Dijk, H. and Van Delden, W. 1981. Genetic variability in Plantago species in relation to their ecology. 1. Genetic analysis of the allozyme variation in P. major subspecies. Theor Appl Genet 60, 285-290.   DOI   ScienceOn
18 Van Dijk, H., Wolff, K. and De Vries, A. 1988. Genetic variability in Plantago species in relation to their ecology. 3. Genetic structure of populations of P. major, P. major and P. major. Theor Appl Genet 75, 518-528.   DOI
19 Weir, B. S. and Cockerham, C. C. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370.   DOI   ScienceOn
20 Wolff, K. 1991. Genetic analysis of morphological variability in three Plantago species with different mating systems. Theor Appl Genet 81, 111-118.
21 Wolff, K., Rogstad, S. H. and Schaal, B. A. 1994. Population and species variation of minisatellite DNA in Plantago. Theor Appl Genet 87, 733-740.
22 Wolff, K. and Morgan-Richards, M. 1998. PCR markers distinguish Plantago species. Theor Appl Genet 96, 282-286.   DOI   ScienceOn
23 Yeh, F. C., Yang, R. C. and Boyle, T. 1999. POPGENE. Version 1.31, Microsoft Windows-based Freeware for Population Genetic Analysis.
24 Woodland, D. W. 1991. Contemporary Plant Systematics, pp. 222, Prentice-Hall, Inc.: Englewood Cliffs.
25 Workman, P. L. and Niswander, J. D. 1970. Population studies on southern Indian tribes.II. Local genetic differentiation in the Papago. Am J Hum Genet 22, 24-49.
26 Wright, S. 1965. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19, 395-420.   DOI   ScienceOn